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The densest subgraph (DS) search over a directed graph focuses on finding the subgraph with the highest

density among all subgraphs. This problem has raised numerous applications, such as fraud detection and

community detection. The state-of-the-art DS algorithms have prohibitively high costs or poor approximation

ratios, making them unsuitable for practical applications. To address these dilemmas, in this paper, we

propose a novel model called integral densest subgraph (IDS). We show that IDS can serve as a near-DS

model that has a tight floor relationship with the density of the DS. To compute IDS, we first propose a

novel flow network named (𝛼, 𝛽)-dense network, based on which we design an exact network-flow algorithm

GetIDS with 𝑂(𝑝 ⋅ log ∣𝑉 ∣ ⋅ ∣𝐸∣1.5) time complexity, where 𝑝 is typically a small constant in real-world graphs.

Additionally, we propose several non-trivial pruning techniques to further improve the efficiency. Subsequently,

we propose a novel (2 + 𝜖)-approximation algorithm MultiCore with near-linear time complexity, providing

a good approximation guarantee with high efficiency. Finally, our extensive experiments on 10 real-world

graphs demonstrate the effectiveness of the proposed IDS model, and the high efficiency and scalability of the

proposed solutions.
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1 Introduction
The directed graph is a ubiquitous data model that captures the directional nature of relationships [1,

7, 21]. For example, in a social media platform, a directed graph can model the “follow” relationships

between users, where an edge from user 𝐴 to user 𝐵 indicates that 𝐴 follows 𝐵 [22]. In biology

networks, directed graphs are essential for representing gene regulatory relationships, where nodes

represent genes and directed edges indicate regulatory influences [16, 25, 34]. Therefore, numerous

directed graph algorithms have been proposed in the literature [3, 9, 18, 23, 27, 29, 30, 35]. Among
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them, identifying the densest subgraph from a directed graph has gained wide attention due to

its nice structure properties and solid theoretical foundation [3, 9, 23, 29, 30]. Besides, it has also

enjoyed numerous applications, such as fraud detection [20], e-commerce recommendation [12],

and community detection [26].

Given a directed graph 𝐺 = (𝑉 , 𝐸) and two node subsets 𝑆,𝑇 ⊆ 𝑉 , the density of the subgraph

induced by (𝑆,𝑇 ) is defined as 𝜌(𝑆,𝑇 ) = ∣𝐸(𝑆,𝑇 )∣√
∣𝑆∣⋅∣𝑇 ∣

, where 𝐸(𝑆,𝑇 ) denotes the set of directed edges

from vertices in 𝑆 to vertices in 𝑇 . The densest subgraph (DS) problem aims to find a pair (𝑆∗,𝑇 ∗)
with the maximum density [3, 9, 23, 29, 30]. To solve the DS problem, many exact [23, 29, 30] and

approximation algorithms [3, 9, 23] have been introduced in the literature. The state-of-the-art

(SOTA) exact algorithm is CP-Exact [29], which maps the DS problem into a set of linear programs.

However, since CP-Exact has to evaluate all possible values of ∣𝑆∗∣/∣𝑇 ∗∣, it may need to invoke

𝑂(∣𝑉 ∣2) convex-programming algorithms (e.g., Frank-Wolfe [29]) and maximum flow computations

in the worst case, resulting in prohibitively high time complexity. The authors [29] also proposed the

approximation algorithm CP-Approx to accelerate CP-Exact. Unfortunately, CP-Approx remains

time-consuming while offering a poor practical approximation ratio, as indicated in our experiments

(Section 7). Therefore, designing efficient algorithms to compute either an exact solution or a high-

quality approximation of the DS problem in directed graphs is very challenging for massive graphs

with billions of edges.

To this end, in this paper, we propose a novel model called integral densest subgraph (IDS),

which is not only computationally efficient but also achieves near-optimal density. Specifically, we

first present the novel concepts of fractional (𝛼, 𝛽)-dense subgraph 𝐹𝛼,𝛽 and integral (𝛼, 𝛽)-dense
subgraph 𝐷𝛼,𝛽 . These subgraphs can achieve different densities based on the parameters 𝛼 and

𝛽 . Subsequently, we prove that the non-empty 𝐹𝛼,𝛽 that maximizes the product 𝛼 ⋅ 𝛽 is exactly

equal to the DS (Theorem 4). Based on these theoretical innovations, we define the IDS as the 𝐷𝛼,𝛽

that maximizes 𝛼 ⋅ 𝛽 . On top of that, let DS be 𝐹𝛼∗,𝛽∗ , we prove that its density equals 2

√
𝛼∗𝛽∗, and

the density of our IDS is at least 2

√
⌊𝛼∗⌋⌊𝛽∗⌋ (Theorem 6). Thus, the IDS provides a near-optimal

density guarantee. For example, on all datasets in our experiments, the density of the IDS is at least

0.9994 times that of the DS (Table 4 in Section 7). This demonstrates that IDS is a near-DS model

and can achieve results comparable to DS.

To compute IDS, we propose a novel flow network called (𝛼, 𝛽)-dense network to compute a

𝐷𝛼,𝛽 subgraph given 𝛼 and 𝛽 . To search for the non-empty 𝐷𝛼,𝛽 that maximizes 𝛼 ⋅ 𝛽 , we develop
a parameterized network-flow algorithm GetIDS, which leverages binary search framework to

compute𝐷𝛼,𝛽 with large 𝛼 ⋅𝛽 values and selects the one that maximizes 𝛼 ⋅𝛽 as the IDS. Furthermore,

by analyzing the properties of 𝐷𝛼,𝛽 , we propose the emptiness theorem (Theorem 10) and the non-
emptiness theorem (Theorem 11). Based on these theorems, we design several non-trivial pruning

techniques and propose a more efficient algorithm GetIDS++ based on a carefully-designed divide-

and-conquer technique, which has a time complexity of 𝑂(𝑝 ⋅ log ∣𝑉 ∣ ⋅ ∣𝐸∣1.5), where 𝑝 is typically

a small constant in real-world graphs (Table 2). This complexity is significantly lower than the

time complexity 𝑂(∣𝑉 ∣2𝑡𝐹𝑊 ) of the SOTA algorithm CP-Exact for computing DS (𝑡𝐹𝑊 is the time

for convex-programming and maximum flow computations), making the computation of IDS much

more efficient than that of DS.

To further improve the efficiency, we also propose approximation algorithms for solving our

IDS problem. We first observe that although existing approximation algorithms for computing DS

[24, 29, 30] can also be used to approximate our IDS, they either provide poor approximation quality

[24] or are very time-consuming [29, 30], making them unsuitable for practical applications. Inspired

by the existing SingleCore algorithm [24], we design a novel approximation algorithm MultiCore
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Table 1. Summary of exact and approximation algorithms.
𝑡𝐹𝑊 is the time for convex-programming and maximum flow computations; 𝑛𝑓 is the number of flow computations and

𝑛𝑓 ≪ 𝑝 ⋅ log ∣𝑉 ∣; 𝑝 is often a small constant and typically 𝑝 ≪

√
∣𝐸∣ in real graphs; 𝑐

∗
is the ratio 𝑐

∗
= ∣𝑆∗∣/∣𝑇 ∗∣ of the

densest subgraph𝐺[𝑆∗,𝑇 ∗].
Exact algorithms

Algorithms Time complexity

CP-Exact [29] 𝑂(∣𝑉 ∣2𝑡𝐹𝑊 )
GetIDS [ours] 𝑂(𝑝 ⋅ log ∣𝑉 ∣ ⋅ ∣𝐸∣1.5)

GetIDS++ [ours] 𝑂(𝑛𝑓 ⋅ ∣𝐸∣1.5)

Approximation algorithms
Algorithms Approximation ratio Time complexity

SingleCore [24]
√
𝑐∗ + 1/

√
𝑐∗ 𝑂(∣𝐸∣)

AllCore [30] 2 𝑂(∣𝐸∣1.5)
CP-Approx [29] 1 + 𝜖 𝑂(log

1+𝜖 ∣𝑉 ∣ ⋅ 𝑡𝐹𝑊 )
MultiCore [ours] 2 + 𝜖 𝑂(log

1+𝜖 ∣𝑉 ∣ ⋅ ∣𝐸∣)

with near-linear time complexity. Specifically, we first use the proposed non-emptiness theorem to

derive an approximation ratio of (
√
𝑐∗ + 1√

𝑐∗
) for the SingleCore algorithm, where 𝑐

∗
= ∣𝑆∗∣/∣𝑇 ∗∣.

Then, we propose a novel (2+ 𝜖)-approximation algorithm,MultiCore, which extends the rationale

of performing a single peeling operation in SingleCore to𝑂(log
1+𝜖 ∣𝑉 ∣) peeling operations, thereby

improving the approximation guarantee to (2 + 𝜖).MultiCore only requires𝑂(∣𝐸∣ ⋅ log
1+𝜖 ∣𝑉 ∣) time,

enabling it to achieve both a good approximation guarantee and fast computation speed. The main

contributions of this paper are summarized below:

Novel integral densest subgraph model.We first introduce two novel concepts of fractional

(𝛼, 𝛽)-dense subgraph 𝐹𝛼,𝛽 and integral (𝛼, 𝛽)-dense subgraph 𝐷𝛼,𝛽 . We then prove that the non-

empty 𝐹𝛼,𝛽 that maximizes 𝛼 ⋅ 𝛽 is equal to the DS. Based on these theoretical innovations, we

define the novel IDS model as the non-empty 𝐷𝛼,𝛽 that maximizes 𝛼 ⋅ 𝛽 . A striking feature is that

our proposed IDS provides a near-optimal density guarantee, which has a tight floor relationship

with the density of the DS (details in Section 3.2).

Efficient exact algorithms. To compute the IDS, we first develop a novel network-flow algorithm

GetIDS. To enhance the efficiency, we propose several non-trivial pruning techniques to eliminate

unnecessary flow network computations and further design a more efficient algorithm GetIDS++.
Its time complexity is 𝑂(𝑝 ⋅ log ∣𝑉 ∣ ⋅ ∣𝐸∣1.5), where 𝑝 is often a small constant in real-world graphs.

This time complexity is significantly better than the 𝑂(∣𝑉 ∣2𝑡𝐹𝑊 ) time complexity for computing

the DS. Thus, our IDS model offers a highly efficient computational approach.

Accurate and efficient approximation algorithms. To further boost efficiency, we propose a

novel (2 + 𝜖)-approximation algorithmMultiCore, based on a carefully-designed peeling technique.

This technique allows us to achieve a (2+𝜖)-approximationwith only a small number of𝑂(log
1+𝜖 ∣𝑉 ∣)

peeling operations. As a result, ourMultiCore has a near-linear time complexity of𝑂(∣𝐸∣⋅log
1+𝜖 ∣𝑉 ∣).

Table 1 summarizes the time complexities of the algorithms and the approximation factors for the

approximation algorithms.

Extensive experiments. We conducted experiments on 10 real-world graphs, and the results

show that: (1) the improved GetIDS++ algorithm is up to two orders of magnitude faster than the

basic GetIDS algorithm and up to four orders of magnitude faster than the SOTA algorithm for

computing the DS; (2) our (2 + 𝜖)-approximation algorithmMultiCore, with 𝜖 = 0.5, achieves an

actual approximation ratio below 1.05 on all datasets, and below 1.0005 on 5 out of 10 datasets,
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Fig. 1. Running example.

while its runtime is significantly lower than other algorithms with comparable approximation

quality; (3) our case study evaluate the performance of the IDS and the DS in practical fraudulent

detection application. The results show that the IDS detects more fraudulent users while being 126

times faster than the DS, demonstrating the high effectiveness of our IDS model.

Reproducibility and full-version paper. The source code of this paper and the full-version of

this paper can be found at https://github.com/Yalong-Zhang/maxab.

2 Preliminaries
Let 𝐺 = (𝑉 , 𝐸) be a directed graph, where 𝑉 is the set of vertices and 𝐸 is the set of directed edges.

For any vertex 𝑥 ∈ 𝑉 , its outdegree and indegree are denoted by 𝑑
𝑂
𝑥 (𝐺) and 𝑑𝐼𝑥 (𝐺), respectively, or

𝑑
𝑂
𝑥 and 𝑑

𝐼
𝑥 for brevity. Given two subsets 𝑆,𝑇 ⊆ 𝑉 (not necessarily disjoint), the set 𝐸(𝑆,𝑇 ) denotes

all directed edges starting from vertices in 𝑆 and ending at vertices in 𝑇 , i.e., 𝐸(𝑆,𝑇 ) = {(𝑥,𝑦) ∈
𝐸∣𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 }. The subgraph𝐺[𝑆,𝑇 ] = (𝑆 ∪𝑇, 𝐸(𝑆,𝑇 )) is called the (𝑆,𝑇 )-induced subgraph. Below,
we give the definitions of density and the densest subgraph.

Definition 1. (Density) Given a graph 𝐺 and its (𝑆,𝑇 )-induced subgraph 𝐺[𝑆,𝑇 ], the density of
𝐺[𝑆,𝑇 ] is defined as

𝜌(𝑆,𝑇 ) = ∣𝐸(𝑆,𝑇 )∣
√
∣𝑆∣ ⋅ ∣𝑇 ∣

. (1)

Definition 2. (Densest subgraph, DS) Given a graph𝐺 , the DS of𝐺 is the maximal subgraph
𝐺[𝑆∗,𝑇 ∗] with the largest density 𝜌(𝑆∗,𝑇 ∗), where the maximal property means there does not exist
a subgraph 𝐺[𝑆+,𝑇 +] ⊃ 𝐺[𝑆∗,𝑇 ∗] with 𝜌(𝑆+,𝑇 +) = 𝜌(𝑆∗,𝑇 ∗) = 𝜌

∗. The density 𝜌(𝑆∗,𝑇 ∗) is also
denoted by 𝜌∗ for simplicity.

Next, we define a novel concept called the fractional (𝛼, 𝛽)-dense subgraph.
Definition 3. (Fractional (𝛼, 𝛽)-dense subgraph 𝐹𝛼,𝛽 ) Given a graph𝐺 and two non-negative

real numbers 𝛼 and 𝛽 , the (𝛼, 𝛽)-dense subgraph 𝐹𝛼,𝛽 is defined as the subgraph 𝐺[𝐹𝑂𝛼,𝛽 , 𝐹
𝐼
𝛼,𝛽 ],

satisfying: (1) (internally dense) for any 𝑆 ⊆ 𝐹
𝑂
𝛼,𝛽 ,𝑇 ⊆ 𝐹

𝐼
𝛼,𝛽 , and 𝑆 ∪𝑇 ≠ ∅, 𝐹𝛼,𝛽 has ∣𝐸(𝐹𝑂𝛼,𝛽 , 𝐹

𝐼
𝛼,𝛽 )∣ −

∣𝐸(𝐹𝑂𝛼,𝛽 \ 𝑆, 𝐹
𝐼
𝛼,𝛽 \𝑇 )∣ ≥ 𝛼 ⋅ ∣𝑆∣ + 𝛽 ⋅ ∣𝑇 ∣; (2) (externally sparse) for any 𝑆 ∩ 𝐹𝑂𝛼,𝛽 = ∅, 𝑇 ∩ 𝐹 𝐼𝛼,𝛽 = ∅,

and 𝑆 ∪𝑇 ≠ ∅, 𝐹𝛼,𝛽 satisfies ∣𝐸(𝐹𝑂𝛼,𝛽 ∪ 𝑆, 𝐹
𝐼
𝛼,𝛽 ∪𝑇 )∣ − ∣𝐸(𝐹𝑂𝛼,𝛽 , 𝐹

𝐼
𝛼,𝛽 )∣ < 𝛼 ⋅ ∣𝑆∣ + 𝛽 ⋅ ∣𝑇 ∣.

According to the condition (1), the internal structure of the subgraph 𝐹𝛼,𝛽 is relatively dense

because removing any (𝑆,𝑇 ) within it will lose at least 𝛼 ⋅ ∣𝑆∣ + 𝛽 ⋅ ∣𝑇 ∣ edges. Similarly, condition

(2) suggests that the area outside the subgraph 𝐹𝛼,𝛽 is relatively sparse because adding any (𝑆,𝑇 )
outside of it into 𝐹𝛼,𝛽 can add at most 𝛼 ⋅ ∣𝑆∣ + 𝛽 ⋅ ∣𝑇 ∣ edges. Therefore, 𝐹𝛼,𝛽 represents a subgraph

that is dense internally and sparse externally.
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Based on Definition 3, we define the integral (𝛼, 𝛽)-dense subgraph by restricting 𝛼 and 𝛽 to be

integers. Since 𝐷𝛼,𝛽 is defined based on 𝐹𝛼,𝛽 , 𝐷𝛼,𝛽 also inherits the desirable property of being

dense internally and sparse externally.

Definition 4. (Integral (𝛼, 𝛽)-dense subgraph 𝐷𝛼,𝛽 ) Given a graph𝐺 and two non-negative
integers 𝛼 and 𝛽 , the integral (𝛼, 𝛽)-dense subgraph 𝐷𝛼,𝛽 is the corresponding fractional subgraph
𝐹𝛼,𝛽 .

By 𝐹𝛼,𝛽 (Definitions 3) and 𝐷𝛼,𝛽 (Definitions 4), we can find a subgraph with a specific density by

varying 𝛼 and 𝛽 . The larger 𝛼 and 𝛽 are, the denser the subgraph tends to be. The two-dimensional

parameters (𝛼, 𝛽) can respectively control the densities of the two parts of the obtained subgraph,

(𝐹𝑂𝛼,𝛽 , 𝐹
𝐼
𝛼,𝛽 ) or (𝐷

𝑂
𝛼,𝛽 , 𝐷

𝐼
𝛼,𝛽 ).

Remark: (𝛼, 𝛽)-dense subgraph and (𝛼, 𝛽)-core. In the literature, a subgraph model similar to

the (𝛼, 𝛽)-dense subgraph is the (𝛼, 𝛽)-core (Definition 6). Both models adjust subgraph density by

varying the parameters 𝛼 and 𝛽 . However, the (𝛼, 𝛽)-core model is based on degree rather than

density, which often leads to inaccurate reflection of the density structure of graphs. Specifically,

given a graph, the maximum density 𝜌𝐶 among all (𝛼, 𝛽)-core subgraphs can only guarantee

𝜌𝐶 ≥ 𝜌
∗/2 and cannot ensure a near-optimal density (such as the near-optimal guarantee of IDS).

Therefore, our density-based dense subgraph model provides better density guarantees compared

to the (𝛼, 𝛽)-core, enabling the discovery of denser (i.e., better) subgraphs in practical applications.

Example 1. Take the directed graph in Figure 1a as an example and assume it is a social network
where directed edges represent the following relationships between users. Intuitively, when 𝛼 increases,
users in 𝐹𝑂𝛼,𝛽 and𝐷

𝑂
𝛼,𝛽 follow more people; when 𝛽 increases, users in 𝐹 𝐼𝛼,𝛽 and𝐷

𝐼
𝛼,𝛽 have more followers.

For example, when 𝛼 is set low and 𝛽 is set high, comparing the subgraphs in Figure 1b and Figure 1c,
𝐷

𝐼
0,3 and 𝐹

𝐼
0.2,2.4 include users𝑢2 and𝑢4, while𝐷

𝐼
0,4 and 𝐹

𝐼
0.2,4.0 include only𝑢4, which has more followers

than 𝑢
2
. This indicates that increasing 𝛽 can filter out users with more followers. Symmetrically, in

Figure 1d, when 𝛼 is set high and 𝛽 is set low, we can filter out users who follow many users, 𝑢
1
and 𝑢

3
,

in 𝐷𝑂 and 𝐹𝑂 .

Below, we prove both 𝐷𝛼,𝛽 and 𝐹𝛼,𝛽 exist and are unique.

Theorem 1. Given a graph 𝐺 and non-negative real number (resp., integers) 𝛼, 𝛽 , we have 𝐹𝛼,𝛽
(resp., 𝐷𝛼,𝛽 ) exists and is unique.

Proof. Let 𝑓 (𝑆,𝑇 ) = ∣𝐸(𝑆,𝑇 )∣ − 𝛼 ⋅ ∣𝑆∣ − 𝛽 ⋅ ∣𝑇 ∣, and 𝐹𝑂 and 𝐹
𝐼
be the inputs that maximize 𝑓 .

Assume that (𝐹𝑂 , 𝐹 𝐼 ) is maximal, meaning there does not exist a subgraph 𝐺[𝑆,𝑇 ] ⊃ 𝐺[𝐹𝑂 , 𝐹 𝐼 ]
such that 𝑓 (𝑆,𝑇 ) = 𝑓 (𝐹𝑂 , 𝐹 𝐼 ). According to the definition of 𝐹𝛼,𝛽 , if 𝐺[𝐹𝑂 , 𝐹 𝐼 ] does not satisfy the

condition in its definition, we could either remove 𝑆 and𝑇 (condition (1)) or add 𝑆 and𝑇 (condition

(2)) to obtain a subgraph with a higher 𝑓 value. This contradicts the assumption that 𝐺[𝐹𝑂 , 𝐹 𝐼 ]
maximizes 𝑓 , and thus, 𝐺[𝐹𝑂 , 𝐹 𝐼 ] satisfies both conditions. Thus, 𝐺[𝐹𝑂 , 𝐹 𝐼 ] is 𝐹𝛼,𝛽 and is unique.

Analogously, we can also prove that 𝐷𝛼,𝛽 exists and is unique. □

In Section 3, we will prove that if two real numbers 𝛼
∗
and 𝛽

∗
satisfy 𝐹𝛼∗,𝛽∗ ≠ ∅ and maximize

the product 𝛼
∗ ⋅ 𝛽∗, then 𝐹𝛼∗,𝛽∗ is exactly the DS. This demonstrates that we can find the densest

subgraph (DS) by maximizing 𝛼 ⋅ 𝛽 in our fractional (𝛼, 𝛽)-dense subgraph model. Based on this

intuition, we define the IDS by restricting 𝛼 and 𝛽 to be integers.

Definition 5. (Integral densest subgraph, IDS) Given a graph𝐺 , let two integers 𝛼∗ and 𝛽
∗

satisfy 𝐷
𝛼
∗
,𝛽

∗ ≠ ∅ and maximize the product 𝛼∗ ⋅ 𝛽
∗
. Then, 𝐷

𝛼
∗
,𝛽

∗ is defined as the IDS.
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In this paper, we use the symbols 𝛼
∗
and 𝛽

∗
(resp., 𝛼

∗
and 𝛽

∗
) to denote the 𝛼 and 𝛽 values of

the DS (resp., IDS).

According to Theorem 4 given in Section 3, DS is equivalent to 𝐹𝛼∗,𝛽∗ that maximizes 𝛼
∗ ⋅ 𝛽∗.

Therefore, both DS and IDS can be viewed as results of maximizing the product of 𝛼 and 𝛽 . However,

there is no inherent relationship between them. Specifically, the DS is not guaranteed to be contained

within the IDS, because DS optimizes over real-valued solutions while IDS optimizes over integer-

valued solutions. Therefore, existing solutions for computing the DS cannot be directly applied to

compute the IDS, and novel approaches are required to compute the IDS.

3 Relation with Densest Subgraph
3.1 𝐹𝛼∗,𝛽∗ is the densest subgraph
In this subsection, we will prove that 𝐹𝛼∗,𝛽∗ is the DS, which provides intuition for the IDS that we

have defined. Besides, the theoretical results derived in the proof also serve as the vital theoretical

foundation for our algorithm design. Specifically, let 𝑐
∗
=

𝑆
∗

𝑇 ∗ . We first prove that 𝐹
𝜌∗

2

√
𝑐∗

,
𝜌∗

√
𝑐∗

2

is the

DS (Theorem 2). Then, in Lemma 1 and Theorem 3, we show that 𝐹
𝜌∗

2

√
𝑐∗

,
𝜌∗

√
𝑐∗

2

is 𝐹𝛼∗,𝛽∗ , meaning that

𝐹
𝜌∗

2

√
𝑐∗

,
𝜌∗

√
𝑐∗

2

maximizes 𝛼 ⋅ 𝛽 . Therefore, 𝐹𝛼∗,𝛽∗ is the DS.

Theorem 2. Given a graph 𝐺 , DS is the 𝐹
𝜌∗

2

√
𝑐∗

,
𝜌∗

√
𝑐∗

2

, i.e., 𝐺[𝑆∗,𝑇 ∗] = 𝐹
𝜌∗

2

√
𝑐∗

,
𝜌∗

√
𝑐∗

2

.

Proof. To prove the theorem, it is sufficient to show that when 𝛼 =
𝜌
∗

2

√
𝑐∗

and 𝛽 =
𝜌
∗√

𝑐∗

2
,

𝐺[𝑆∗,𝑇 ∗] satisfies the two conditions in Definition 3. For condition (1), assume for contradiction

that there exist 𝑆
−
⊆ 𝑆

∗
, 𝑇

−
⊆ 𝑇

∗
, and 𝑆

− ∪𝑇 −
≠ ∅ such that ∣𝐸(𝑆∗,𝑇 ∗)∣ − ∣𝐸(𝑆∗ \ 𝑆−,𝑇 ∗ \𝑇 −)∣ <

𝜌
∗

2

√
𝑐∗
∣𝑆−∣+ 𝜌

∗√
𝑐∗

2
∣𝑇 −∣. Thenwe have 𝜌(𝑆∗\𝑆−,𝑇 ∗\𝑇 −) = ∣𝐸(𝑆∗\𝑆−,𝑇 ∗\𝑇 −)∣√

∣𝑆∗\𝑆−∣⋅∣𝑇 ∗\𝑇 −∣
>

∣𝐸(𝑆∗,𝑇 ∗)∣− 𝜌
∗

2

√
𝑐∗

∣𝑆−∣− 𝜌
∗√

𝑐∗

2
∣𝑇 −∣

√
∣𝑆∗\𝑆−∣⋅∣𝑇 ∗\𝑇 −∣

=

𝜌
∗

1

2

√
𝑐∗

∣𝑆∗\𝑆−∣+
√
𝑐∗

2
∣𝑇 ∗\𝑇 −∣

√
∣𝑆∗\𝑆−∣⋅∣𝑇 ∗\𝑇 −∣

≥ 𝜌
∗
, a contradiction that 𝜌

∗
is the maximum density. For condition (2), we

can prove it using a method similar to that of condition (1). Therefore, 𝐹
𝜌∗

2

√
𝑐∗

,
𝜌∗

√
𝑐∗

2

= 𝐺[𝑆∗,𝑇 ∗]. □

Lemma 1. Given a non-empty 𝐹𝛼,𝛽 (resp.,𝐷𝛼,𝛽 ), we have 𝜌(𝐹𝑂𝛼,𝛽 , 𝐹
𝐼
𝛼,𝛽 ) ≥ 2

√
𝛼𝛽 (resp., 𝜌(𝐷𝑂

𝛼,𝛽 , 𝐷
𝐼
𝛼,𝛽 ) ≥

2

√
𝛼𝛽).

Proof. By condition (1) in the definition of 𝐹𝛼,𝛽 , when 𝑆 = 𝐹
𝑂
𝛼,𝛽 and 𝑇 = 𝐹

𝐼
𝛼,𝛽 , we have

∣𝐸(𝐹𝑂𝛼,𝛽 , 𝐹
𝐼
𝛼,𝛽 )∣ ≥ 𝛼∣𝐹

𝑂
𝛼,𝛽 ∣ + 𝛽∣𝐹

𝐼
𝛼,𝛽 ∣. Therefore, we have 𝜌(𝐹

𝑂
𝛼,𝛽 , 𝐹

𝐼
𝛼,𝛽 ) =

∣𝐸(𝐹𝑂𝛼,𝛽 ,𝐹
𝐼
𝛼,𝛽 )∣√

∣𝐹𝑂
𝛼,𝛽

∣⋅∣𝐹 𝐼
𝛼,𝛽

∣
≥

𝛼 ∣𝐹𝑂𝛼,𝛽 ∣+𝛽∣𝐹
𝐼
𝛼,𝛽 ∣√

∣𝐹𝑂
𝛼,𝛽

∣⋅∣𝐹 𝐼
𝛼,𝛽

∣
≥

2

√
𝛼𝛽 . Analogously, we can get 𝜌(𝐷𝑂

𝛼,𝛽 , 𝐷
𝐼
𝛼,𝛽 ) ≥ 2

√
𝛼𝛽 . □

Theorem 3. Given a graph 𝐺 , we have 𝛼∗ =
𝜌
∗

2

√
𝑐∗

and 𝛽∗ =
𝜌
∗√

𝑐∗

2
, thus 𝐹

𝜌∗

2

√
𝑐∗

,
𝜌∗

√
𝑐∗

2

is 𝐹𝛼∗,𝛽∗ .

Proof. For 𝐹𝛼,𝛽 ≠ ∅, it follows from Lemma 1 that 𝜌
∗
≥ 𝜌(𝐹𝛼,𝛽 ) ≥ 2

√
𝛼𝛽 , which implies 𝛼𝛽 ≤

𝜌
∗2

4
.

So, 𝛼𝛽 cannot exceed
𝜌
∗2

4
. Since 𝐹

𝜌∗

2

√
𝑐∗

,
𝜌∗

√
𝑐∗

2

achieves 𝛼𝛽 =
𝜌
∗2

4
, it maximizes 𝛼𝛽 . □
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(a) Example graph.
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1

2
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(1.75,1.40)

Fractional Dense Subgraph
= 1.75 × 1.40

Integral Dense Subgraph

(b) The emptiness of 𝐹𝛼,𝛽
and 𝐷𝛼,𝛽 when varying 𝛼

and 𝛽 .

Fig. 2. Example of maximizing 𝛼∗ ⋅ 𝛽∗ and 𝛼∗ ⋅ 𝛽
∗
.

Theorem 4. Given a graph 𝐺 , let two real numbers 𝛼∗ and 𝛽∗ satisfy 𝐹𝛼∗,𝛽∗ ≠ ∅ and maximize
𝛼
∗ ⋅ 𝛽∗. Then, 𝐹𝛼∗,𝛽∗ is the DS.

Example 2. Taking the directed graph in Figure 2a as an example, whose DS is𝐺[𝑆∗,𝑇 ∗]. Figure 2b
shows whether 𝐹𝛼,𝛽 and 𝐷𝛼,𝛽 are non-empty when varying 𝛼 and 𝛽 . When (𝛼, 𝛽) is in the blue region,
𝐹𝛼,𝛽 ≠ ∅; when (𝛼, 𝛽) is at the green coordinate points, 𝐷𝛼,𝛽 ≠ ∅. For 𝐹𝛼∗,𝛽∗ , we have 𝛼

∗
= 1.75 and

𝛽
∗
= 1.40, and the red line represents all (𝛼, 𝛽) where 𝛼𝛽 = 1.75 × 1.40. It can be seen that, within

the blue region, (1.75, 1.40) is the only point on the red line, i.e., maximizing 𝛼𝛽 . For 𝐷
𝛼
∗
,𝛽

∗ , both

(𝛼∗ = 2, 𝛽
∗
= 1) and (𝛼∗ = 1, 𝛽

∗
= 2) maximize 𝛼∗ ⋅ 𝛽

∗
, but both 𝐷

2,1 and 𝐷1,2 equal the DS.

According to Theorem 2 and Theorem 3, it follows that 𝐹𝛼∗,𝛽∗ is the DS. This indicates that, by

maximizing 𝛼
∗ ⋅ 𝛽∗, the DS can be obtained. Therefore, intuitively, the IDS 𝐷

𝛼
∗
,𝛽

∗ , obtained by

maximizing 𝛼
∗ ⋅ 𝛽

∗
, should also have very high density. In the next subsection, we will prove that

𝐷
𝛼
∗
,𝛽

∗ indeed has a near-optimal density lower bound.

3.2 Density of the integral densest subgraph
The following theorem show a hierarchy property of 𝐹𝛼,𝛽 and 𝐷𝛼,𝛽 , which is a vital property for

our theoretical analysis and algorithms.

Theorem 5. (1) Given 𝐹𝛼,𝛽 and 𝐹𝛼+,𝛽+ , if 𝛼
+
≥ 𝛼 and 𝛽+ ≥ 𝛽 , then we have 𝐹𝛼+,𝛽+ ⊆ 𝐹𝛼,𝛽 .

(2) Given 𝐷𝛼,𝛽 and 𝐷𝛼+,𝛽+ , if 𝛼
+
≥ 𝛼 and 𝛽+ ≥ 𝛽 , then we have 𝐷𝛼+,𝛽+ ⊆ 𝐷𝛼,𝛽 .

(3) Given 𝐷𝛼,𝛽 and 𝐹𝛼+,𝛽+ , if 𝛼
+
≥ 𝛼 and 𝛽+ ≥ 𝛽 , then we have 𝐹𝛼+,𝛽+ ⊆ 𝐷𝛼,𝛽 .

Proof. For (1), assume for contradiction that there exist 𝑆 = 𝐹
𝑂

𝛼+,𝛽+ \ 𝐹
𝑂
𝛼,𝛽 and 𝑇 = 𝐹

𝐼

𝛼+,𝛽+ \ 𝐹
𝐼
𝛼,𝛽 ,

with 𝑆 ∪ 𝑇 ≠ ∅. Then we have ∣𝐸(𝐹𝑂𝛼+,𝛽+ , 𝐹
𝐼

𝛼+,𝛽+ )∣ − ∣𝐸(𝐹𝑂𝛼+,𝛽+ \ 𝑆, 𝐹 𝐼𝛼+,𝛽+ \ 𝑇 )∣ ≥ 𝛼∣𝑆∣ + 𝛽∣𝑇 ∣, and
∣𝐸(𝐹𝑂𝛼,𝛽∪𝑆, 𝐹

𝐼
𝛼,𝛽∪𝑇 )∣−∣𝐸(𝐹

𝑂
𝛼,𝛽 , 𝐹

𝐼
𝛼,𝛽 )∣ < 𝛼∣𝑆∣+𝛽∣𝑇 ∣. However, by analyzing the inclusion relationships

between the subgraphs, we can see that ∣𝐸(𝐹𝑂𝛼+,𝛽+ , 𝐹
𝐼

𝛼+,𝛽+ )∣ − ∣𝐸(𝐹𝑂𝛼+,𝛽+ \ 𝑆, 𝐹
𝐼

𝛼+,𝛽+ \𝑇 )∣ ≤ ∣𝐸(𝐹𝑂𝛼,𝛽 ∪
𝑆, 𝐹

𝐼
𝛼,𝛽 ∪𝑇 )∣ − ∣𝐸(𝐹𝑂𝛼,𝛽 , 𝐹

𝐼
𝛼,𝛽 )∣, leading to a contradiction. Thus, 𝐹𝛼+,𝛽+ ⊆ 𝐹𝛼,𝛽 . Analogously, (2) and

(3) also hold. □

Then, we derive the following bound for the density of 𝐷
𝛼
∗
,𝛽

∗ .
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Theorem 6. Given a graph 𝐺 , we have 𝜌∗ = 𝜌(𝐹𝑂𝛼∗,𝛽∗ , 𝐹
𝐼

𝛼∗,𝛽∗ ) = 2

√
𝛼∗ ⋅ 𝛽∗ and 𝜌(𝐷𝑂

𝛼
∗
,𝛽

∗ , 𝐷
𝐼

𝛼
∗
,𝛽

∗ ) ≥
2

√
⌊𝛼∗⌋⌊𝛽∗⌋.

Proof. According to Theorem 3, we have 2

√
𝛼∗ ⋅ 𝛽∗ = 𝜌

∗
. By the conclusion (3) in Theorem 5,

we know that 𝐷⌊𝛼∗⌋,⌊𝛽∗⌋ is non-empty, thus 𝜌(𝐷𝑂

𝛼
∗
,𝛽

∗ , 𝐷
𝐼

𝛼
∗
,𝛽

∗ ) ≥ 2

√
𝛼
∗ ⋅ 𝛽

∗
≥ 2

√
⌊𝛼∗⌋ ⋅ ⌊𝛽∗⌋. □

According to Theorem 6, the difference in density between the DS and the IDS is only a floor
operation. This indicates that the lower bound on the density of the IDS is quite tight. Our exper-

iments have confirmed that the density of the IDS is at least 0.9994 times that of the DS, with a

maximum difference of only 0.0271.

4 A New Flow-Based Algorithm

To compute 𝐷
𝛼
∗
,𝛽

∗ , we need to vary the values of (𝛼, 𝛽) to guess (𝛼∗, 𝛽∗) and then compute 𝐷
𝛼
∗
,𝛽

∗ .

Therefore, we first present the approach to, given 𝛼 and 𝛽 , compute a single 𝐷𝛼,𝛽 .

4.1 Compute a single 𝐷𝛼,𝛽

To obtain a single 𝐷𝛼,𝛽 , we first transform the problem into an optimization problem, and then

solve it using the minimum cut method to derive 𝐷𝛼,𝛽 , i.e., mapping the minimum cut to 𝐷𝛼,𝛽 .

Below, we introduce the optimization formulation.

Theorem 7. Given a graph 𝐺 and two integers 𝛼 and 𝛽 , 𝐷𝛼,𝛽 is the only maximal subgraph
𝐺[𝐷𝑂

, 𝐷
𝐼 ] that minimizes 𝛼∣𝐷𝑂 ∣ + 𝛽∣𝐷𝐼 ∣ +∑𝑥∈𝑉 \𝐷𝑂 𝑑

𝑂
𝑥 + ∣𝐸(𝐷𝑂

,𝑉 \ 𝐷𝐼 )∣.
Proof. Similar to the proof of Theorem 1, it can be shown that𝐷𝛼,𝛽 is the only maximal subgraph

𝐺[𝐷𝑂
, 𝐷

𝐼 ] that minimizes 𝛼∣𝐷𝑂 ∣ + 𝛽∣𝐷𝐼 ∣ − ∣𝐸(𝐷𝑂
, 𝐷

𝐼 )∣. We have 𝛼∣𝐷𝑂 ∣ + 𝛽∣𝐷𝐼 ∣ − ∣𝐸(𝐷𝑂
, 𝐷

𝐼 )∣ =
𝛼∣𝐷𝑂 ∣ + 𝛽∣𝐷𝐼 ∣ − (∑𝑥∈𝐷𝑂 𝑑

𝑂
𝑥 − ∣𝐸(𝐷𝑂

,𝑉 \ 𝐷𝐼 )∣) = 𝛼∣𝐷𝑂 ∣ + 𝛽∣𝐷𝐼 ∣ +∑𝑥∈𝑉 \𝐷𝑂 𝑑
𝑂
𝑥 + ∣𝐸(𝐷𝑂

,𝑉 \𝐷𝐼 )∣ −
∑𝑥∈𝑉 𝑑

𝑂
𝑥 . In the above equation, ∑𝑥∈𝑉 𝑑

𝑂
𝑥 is a constant in a graph, thus 𝐺[𝐷𝑂

, 𝐷
𝐼 ] minimizes

𝛼∣𝐷𝑂 ∣ + 𝛽∣𝐷𝐼 ∣ +∑𝑥∈𝑉 \𝐷𝑂 𝑑
𝑂
𝑥 + ∣𝐸(𝐷𝑂

,𝑉 \ 𝐷𝐼 )∣. □

Next, we introduce some basic concepts of the flow network [13]. A flow network can be

represented as a triplet (𝑉𝑓 , 𝐸𝑓 , 𝑐), where 𝑉𝑓 is the set of nodes, 𝑠 ∈ 𝑉𝑓 is the source node, 𝑡 ∈ 𝑉𝑓
is the sink node, 𝐸𝑓 is the set of directed edges, and 𝑐 is the capacity of the edges. The flow

on an edge cannot exceed its capacity. The maximum flow of a flow network is equal to its

minimum cut value, min𝑆⊆𝑉𝑓 ,𝑇=𝑉𝑓 \𝑆 cut(𝑆,𝑇 ), where 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇 , and the cut value is defined as

cut(𝑆,𝑇 ) = ∑(𝑥,𝑦)∈𝐸𝑓 ,𝑥∈𝑆,𝑦∈𝑇
𝑐(𝑥,𝑦). Note that since 𝐷𝛼,𝛽 in Theorem 7 is maximal, we also define

the minimum cut (𝑆,𝑇 ) as maximal here, i.e., there does not exist 𝑆
+
⊃ 𝑆 , 𝑇

+
= 𝑉𝑓 \ 𝑆+, such that

cut(𝑆+,𝑇 +) also yields the minimum cut value.

Based on the above notions, we propose a novel flow network called (𝛼, 𝛽)-dense flow network,

whose definition is as follows: Given a directed graph 𝐺 = (𝑉 , 𝐸) and two non-negative integers

𝛼 and 𝛽 , the (𝛼, 𝛽)-dense flow network is (𝑉𝑓 , 𝐸𝑓 , 𝑐), where: (1) 𝑉𝑓 = {𝑠, 𝑡} ∪𝑉𝑂 ∪𝑉 𝐼
, and for each

node 𝑥 ∈ 𝑉 , add 𝑥
𝑂
to 𝑉

𝑂
, and add 𝑥

𝐼
to 𝑉

𝐼
; (2) For each node 𝑥

𝑂
∈ 𝑉

𝑂
, add an edge (𝑠, 𝑥𝑂 ) to 𝐸𝑓

with capacity 𝑐(𝑠, 𝑥𝑂 ) = 𝑑𝑂𝑥 ; (3) For each edge (𝑥,𝑦) in 𝐸, add an edge (𝑥𝑂 , 𝑦𝐼 ) to 𝐸𝑓 with capacity 1;

(4) For each node 𝑥
𝑂
∈ 𝑉

𝑂
, add an edge (𝑥𝑂 , 𝑡 ) to 𝐸𝑓 with capacity 𝑐(𝑥𝑂 , 𝑡 ) = 𝛼 ; (5) For each node

𝑥
𝐼
∈ 𝑉

𝐼
, add an edge (𝑥 𝐼 , 𝑡 ) to 𝐸𝑓 with capacity 𝑐(𝑥 𝐼 , 𝑡 ) = 𝛽 . An example is shown in Figure 3.

Based on the (𝛼, 𝛽)-dense flow network, we propose Algorithm 1, which can compute 𝐷𝛼,𝛽

given 𝛼 and 𝛽 . First, the algorithm constructs the flow network (lines 1–7), then computes the
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𝑑𝑑𝑢𝑢3
𝑂𝑂

𝑑𝑑𝑢𝑢2
𝑂𝑂

𝑑𝑑𝑢𝑢4
𝑂𝑂

𝛼𝛼

𝛼𝛼
𝛼𝛼

𝛽𝛽

𝛽𝛽
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𝑢𝑢1

𝑢𝑢3 𝑢𝑢4

𝑢𝑢2

Fig. 3. Example of (𝛼, 𝛽)-dense flow network.

minimum cut (𝑆,𝑇 ) on this flow network (line 8), and finally derives 𝐷𝛼,𝛽 based on (𝑆,𝑇 ) (lines
8–11). The correctness and complexity of Algorithm 1 are analyzed as follows. Due to space

limitations, some proofs are provided in the full-version of our paper, which can be found at

https://github.com/Yalong-Zhang/maxab.

Theorem 8. Algorithm 1 can correctly output 𝐷𝛼,𝛽 with a time complexity of 𝑂(∣𝐸∣1.5) and a space
complexity of 𝑂(∣𝐸∣).
Armed with the GetD algorithm, we propose a basic network-flow algorithm to compute the

IDS.

4.2 A basic algorithm: GetIDS
To compute the IDS, we need to maximize 𝛼𝛽 . A straightforward idea is to compute all 𝐷𝛼,𝛽 with

large 𝛼𝛽 , and then take the maximum value as 𝛼
∗ ⋅ 𝛽

∗
. Based on this idea, we define 𝛽

max
(𝛼) (resp.,

𝛼
max

(𝛽)) as the maximum integer such that 𝐷𝛼,𝛽
max

(𝛼) ≠ ∅ (resp., 𝐷𝛼
max

(𝛽),𝛽 ≠ ∅), given an integer

𝛼 (resp., 𝛽). Thus, each 𝛼 × 𝛽
max

(𝛼) and 𝛼
max

(𝛽) × 𝛽 could potentially be 𝛼
∗ ⋅ 𝛽

∗
. By selecting the

maximum value among all 𝛼 × 𝛽
max

(𝛼) and 𝛼
max

(𝛽) × 𝛽 , we can obtain 𝛼
∗ ⋅ 𝛽

∗
.

First, we enumerate 𝛼 and compute its corresponding 𝛽
max

(𝛼) and the product 𝛼 × 𝛽
max

(𝛼). Then,
we enumerate 𝛽 and compute its corresponding 𝛼

max
(𝛽) and the product 𝛼

max
(𝛽)×𝛽 . The maximum

value of 𝛼𝛽 obtained in this process is 𝛼
∗ ⋅ 𝛽

∗
. Based on this idea, we propose the GetIDS algorithm

as shown in Algorithm 2. To determine the range for enumerating 𝛼 and 𝛽 , the algorithm first

computes 𝑝 using the procedure Getp (line 1), where 𝑝 is the largest integer such that 𝐷𝑝,𝑝 ≠ ∅. To
compute 𝑝 , Getp first uses binary lifting search to obtain an approximate range [𝑝𝑙 , 𝑝𝑢] for 𝑝 (line

19), and then performs a binary search within this range to find the exact value of 𝑝 (lines 20–23).

Then, 𝛼 is enumerated from 1 to 𝑝 , and for each 𝛼 , we compute 𝛽
max

(𝛼) and 𝛼 × 𝛽
max

(𝛼) (lines 3–11).
Similarly, 𝛽 is enumerated from 1 to 𝑝 , and for each 𝛽 , we compute 𝛼

max
(𝛽) and 𝛼

max
(𝛽) × 𝛽 (lines

12–15). The maximum 𝛼𝛽 obtained in this process is stored in the variable𝑚𝑎𝑥𝑎𝑏 =𝑚𝑎𝑥𝑎 ×𝑚𝑎𝑥𝑏.
Finally, the algorithm outputs 𝐷𝑚𝑎𝑥𝑎,𝑚𝑎𝑥𝑏 = 𝐷

𝛼
∗
,𝛽

∗ (line 16). Next, we show the correctness and

complexity of GetIDS.

Theorem 9. Algorithm 2 can correctly output 𝐷
𝛼
∗
,𝛽

∗ with a time complexity of𝑂(𝑝 ⋅ log ∣𝑉 ∣ ⋅ ∣𝐸∣1.5)
and a space complexity of 𝑂(∣𝐸∣).

Theoretically, 𝑝 ≤

√
∣𝐸∣/2, because ∣𝐸(𝐷𝑂

𝑝,𝑝 , 𝐷
𝐼
𝑝,𝑝 )∣ ≥ 𝑝∣𝐷𝑂

𝑝,𝑝 ∣ + 𝑝∣𝐷𝐼
𝑝,𝑝 ∣ ≥ 𝑝

∣𝐸(𝐷𝑂
𝑝,𝑝 ,𝐷

𝐼
𝑝,𝑝 )∣

∣𝐷𝐼
𝑝,𝑝 ∣

+ 𝑝∣𝐷𝐼
𝑝,𝑝 ∣ ≥

2𝑝
√
∣𝐸(𝐷𝑂

𝑝,𝑝 , 𝐷
𝐼
𝑝,𝑝 )∣. This implies that 𝑝 ≤

√
∣𝐸(𝐷𝑂

𝑝,𝑝 , 𝐷
𝐼
𝑝,𝑝 )∣/2 ≤

√
∣𝐸∣/2. However, 𝑝 approaches this

theoretical upper bound

√
∣𝐸∣/2 only when the graph is nearly a complete graph. In real-world

sparse graphs, 𝑝 typically satisfies 𝑝 ≪

√
∣𝐸∣/2, as indicated in our experiments (details in Table 2).
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Algorithm 1: GetD(𝐺, 𝛼, 𝛽)
Input: A directed graph𝐺 = (𝑉 , 𝐸), two non-negative integers 𝛼 and 𝛽 .

Output: 𝐷𝛼,𝛽 .

1 𝑉
𝑂

← ∅,𝑉 𝐼
← ∅, 𝐸𝑓 ← ∅, 𝐷𝑂

𝛼,𝛽 ← ∅, 𝐷𝐼
𝛼,𝛽 ← ∅;

2 foreach 𝑥 ∈ 𝑉 do𝑉𝑂
← 𝑥

𝑂
,𝑉

𝐼
← 𝑥

𝐼
;

3 foreach (𝑥, 𝑦) ∈ 𝐸 do 𝐸𝑓 ← 𝐸𝑓 ∪ {(𝑥𝑂 , 𝑦
𝐼 )}, 𝑐(𝑥𝑂 , 𝑦

𝐼 ) ← 1;

4 foreach 𝑥
𝑂

∈ 𝑉
𝑂 do 𝐸𝑓 ← 𝐸𝑓 ∪ {(𝑠, 𝑥𝑂 )}, 𝑐(𝑠, 𝑥𝑂 ) ← 𝑑

𝑂
𝑥 ;

5 foreach 𝑥
𝑂

∈ 𝑉
𝑂 do 𝐸𝑓 ← 𝐸𝑓 ∪ {(𝑥𝑂 , 𝑡 )}, 𝑐(𝑥𝑂 , 𝑡 ) ← 𝛼 ;

6 foreach 𝑦
𝐼
∈ 𝑉

𝐼 do 𝐸𝑓 ← 𝐸𝑓 ∪ {(𝑦𝐼 , 𝑡 )}, 𝑐(𝑦𝐼 , 𝑡 ) ← 𝛽 ;

7 𝑉𝑓 ← 𝑉
𝑂 ∪𝑉

𝐼 ∪ {𝑠, 𝑡};
8 Compute the minimum cut (𝑆,𝑇 ) in the flow network (𝑉𝑓 , 𝐸𝑓 , 𝑐);
9 foreach 𝑥

𝑂
∈ 𝑆 \ 𝑠 do 𝐷

𝑂
𝛼,𝛽 ← 𝑥 ;

10 foreach 𝑦
𝐼
∈ 𝑇 \ 𝑡 do 𝐷

𝐼
𝛼,𝛽 ← 𝑦;

11 return𝐺[𝐷𝑂
𝛼,𝛽 , 𝐷

𝐼
𝛼,𝛽 ];

For example, on the dataset UK with ∣𝐸∣ = 936.4M, 𝑝 = 454, which is far less than

√
∣𝐸∣/2 ≈ 15, 300.

Therefore, the time complexity of GetIDS, 𝑂(𝑝 ⋅ log ∣𝑉 ∣ ⋅ ∣𝐸∣1.5), is significantly lower than that of

the state-of-the-art algorithm for computing DS,𝑂(∣𝑉 ∣2𝑡𝐹𝑊 ), where 𝑡𝐹𝑊 includes the time required

for several convex programming and flow network computations.

5 A Divide-and-Conquer Algorithm
In the GetIDS algorithm, for each 𝛼 = 1, . . . , 𝑝 and 𝛽 = 1, . . . , 𝑝 , it performs a binary search to

compute 𝛽
max

(𝛼) and 𝛼
max

(𝛽). However, only the enumeration when 𝛼 or 𝛽 equals 𝛼
∗
or 𝛽

∗
can

actually compute 𝛼
∗ ⋅ 𝛽

∗
. In most cases, 𝛼 × 𝛽

max
(𝛼) and 𝛼

max
(𝛽) × 𝛽 are relatively small, and there

is no need to perform time-consuming binary searches and flow network calculations for them.

Next, we develop an improved algorithm GetIDS++, which selectively decides whether to perform

binary searches for the currently enumerated 𝛼 and 𝛽 , and in most cases, it avoids the costly binary

search. The decision-making method used by GetIDS++ is based on upper and lower bounds of

𝛽
max

(𝛼) and 𝛼
max

(𝛽) to determine whether it is necessary to use binary search to compute their

exact values. The theoretical foundation for obtaining these bounds comes from our following

emptiness theorem and non-emptiness theorem.

Lemma 2. The following equivalences hold:

(1) 𝐹𝛼,𝛽 ≠ ∅ ⇔ ∃(𝑆,𝑇 ) ⊆ (𝑉 ,𝑉 ), ∣𝐸(𝑆,𝑇 )∣ ≥ 𝛼∣𝑆∣ + 𝛽∣𝑇 ∣ (𝛼, 𝛽 ∈ R);
(2) 𝐹𝛼,𝛽 = ∅ ⇔ ∀(𝑆,𝑇 ) ⊆ (𝑉 ,𝑉 ), ∣𝐸(𝑆,𝑇 )∣ < 𝛼∣𝑆∣ + 𝛽∣𝑇 ∣ (𝛼, 𝛽 ∈ R);
(3) 𝐷𝛼,𝛽 ≠ ∅ ⇔ ∃(𝑆,𝑇 ) ⊆ (𝑉 ,𝑉 ), ∣𝐸(𝑆,𝑇 )∣ ≥ 𝛼∣𝑆∣ + 𝛽∣𝑇 ∣ (𝛼, 𝛽 ∈ N);
(4) 𝐷𝛼,𝛽 = ∅ ⇔ ∀(𝑆,𝑇 ) ⊆ (𝑉 ,𝑉 ), ∣𝐸(𝑆,𝑇 )∣ < 𝛼∣𝑆∣ + 𝛽∣𝑇 ∣ (𝛼, 𝛽 ∈ N).

Theorem 10. (Emptiness Theorem) (1) If 𝐹𝛼
1
,𝛽

1
= 𝐹𝛼

2
,𝛽

2
= ∅, then for any 𝜆 ∈ [0, 1], we

have 𝐹𝜆𝛼
1
+(1−𝜆)𝛼

2
,𝜆𝛽

1
+(1−𝜆)𝛽

2
= ∅; (2) If 𝐷𝛼

1
,𝛽

1
= 𝐷𝛼

2
,𝛽

2
= ∅, then for any 𝜆 ∈ [0, 1], we have

𝐷⌈𝜆𝛼
1
+(1−𝜆)𝛼

2
⌉,⌈𝜆𝛽

1
+(1−𝜆)𝛽

2
⌉ = ∅.

The emptiness theorem can be used to determine the upper bound of 𝛽
max

(𝛼𝑚) when we know

𝐷𝛼
1
,𝛽

1
= 𝐷𝛼

2
,𝛽

2
= ∅, where 𝛼𝑚 ∈ [𝛼

1
, 𝛼

2
]. By setting 𝜆 =

𝛼𝑚−𝛼
2

𝛼
1
−𝛼

2

and letting 𝛽𝑚 = ⌈𝜆𝛽
1
+ (1 − 𝜆)𝛽

2
⌉ =

⌈ 𝛽1(𝛼𝑚−𝛼
2
)+𝛽

2
(𝛼

1
−𝛼𝑚 )

𝛼
1
−𝛼

2

⌉, we get 𝐷𝛼𝑚,𝛽𝑚 = ∅, which implies 𝛽
max

(𝛼𝑚) ≤ 𝛽𝑚 − 1. Without further

computation, we can conclude that 𝛼𝑚𝛽max
(𝛼𝑚) can be at most 𝛼𝑚(𝛽𝑚 − 1). If this value is small
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Algorithm 2: GetIDS(𝐺)
Input: A directed graph𝐺 = (𝑉 , 𝐸).
Output: 𝐷

𝛼∗,𝛽
∗ .

1 𝑝 ← Getp(𝐺);
2 𝑚𝑎𝑥𝑎𝑏 ← 𝑝 × 𝑝 ,𝑚𝑎𝑥𝑎 ← 𝑝 ,𝑚𝑎𝑥𝑏 ← 𝑝 ;

3 for 𝛼 = 1, . . . , 𝑝 do
4 𝛽𝑙 ← 𝑝 , 𝛽𝑢 ← max𝑥∈𝑉 𝑑

𝐼
𝑥 ;

5 while 𝛽𝑙 < 𝛽𝑢 do
6 𝛽𝑚 ← ⌊(𝛽𝑙 + 𝛽𝑢 )/2⌋;
7 if GetD(𝐺,𝛼, 𝛽𝑚) ≠ ∅ then 𝛽𝑙 ← 𝛽𝑚 + 1;

8 else 𝛽𝑢 ← 𝛽𝑚 ;

9 𝛽
max

(𝛼) ← 𝛽𝑙 ;

10 if 𝛼 × 𝛽
max

(𝛼) >𝑚𝑎𝑥𝑎𝑏 then
11 𝑚𝑎𝑥𝑎𝑏 ← 𝛼 × 𝛽

max
(𝛼),𝑚𝑎𝑥𝑎 ← 𝛼 ,𝑚𝑎𝑥𝑏 ← 𝛽

max
(𝛼);

12 for 𝛽 = 1, . . . , 𝑝 do
13 Use the same method as lines 4-9 to compute 𝛼

max
(𝛽);

14 if 𝛼
max

(𝛽) × 𝛽 >𝑚𝑎𝑥𝑎𝑏 then
15 𝑚𝑎𝑥𝑎𝑏 ← 𝛼

max
(𝛽) × 𝛽 ,𝑚𝑎𝑥𝑎 ← 𝛼

max
(𝛽),𝑚𝑎𝑥𝑏 ← 𝛽 ;

16 return GetD(𝐺,𝑚𝑎𝑥𝑎,𝑚𝑎𝑥𝑏);
17 Function Getp(𝐺)
18 𝑝𝑙 ← 1, 𝑝𝑢 ← 2;

19 while GetD(𝐺, 𝑝𝑢 , 𝑝𝑢 ) ≠ ∅ do 𝑝𝑙 ← 2𝑝𝑙 , 𝑝𝑢 ← 2𝑝𝑢 ;

20 while 𝑝𝑙 < 𝑝𝑢 do
21 𝑝𝑚 ← ⌊(𝑝𝑙 + 𝑝𝑢 )/2⌋;
22 if GetD(𝐺, 𝑝𝑚, 𝑝𝑚) ≠ ∅ then 𝑝𝑙 ← 𝑝𝑚 + 1;

23 else 𝑝𝑢 ← 𝑝𝑚 ;

24 return 𝑝𝑙 ;

(e.g., less than 𝛼
1
⋅ 𝛽

1
or 𝛼

2
⋅ 𝛽

2
), 𝛼𝑚𝛽max

(𝛼𝑚) must not be 𝛼
∗ ⋅ 𝛽

∗
and there is no need to calculate

the exact value of 𝛽
max

(𝛼𝑚), thus, we can safely prune 𝛼𝑚 .

Theorem 11. (Non-emptiness Theorem) (1) If 𝐹𝛼,𝛽 ≠ ∅, then for any 𝑡 ∈ [0, 1], we have
𝐹𝑡 (𝛼+𝛽/𝑐𝐹 ),(1−𝑡 )(𝛼 ⋅𝑐𝐹+𝛽) ≠ ∅, where 𝑐𝐹 = ∣𝐹𝑂𝛼,𝛽 ∣/∣𝐹

𝐼
𝛼,𝛽 ∣; (2) If 𝐷𝛼,𝛽 ≠ ∅, then for any 𝑡 ∈ [0, 1], we have

𝐷⌊𝑡 (𝛼+𝛽/𝑐𝐷 )⌋,⌊(1−𝑡 )(𝛼 ⋅𝑐𝐷+𝛽)⌋ ≠ ∅, where 𝑐𝐷 = ∣𝐷𝑂
𝛼,𝛽 ∣/∣𝐷

𝐼
𝛼,𝛽 ∣.

Using the non-emptiness theorem, if we have already computed 𝐷𝛼,𝛽 , we not only know that

𝛼
∗ ⋅ 𝛽

∗
≥ 𝛼𝛽 but also 𝛼

∗ ⋅ 𝛽
∗
≥ max𝑡∈[0,1] {⌊𝑡 (𝛼 + 𝛽/𝑐𝐷 )⌋ ⋅ ⌊(1 − 𝑡 )(𝛼 ⋅ 𝑐𝐷 + 𝛽)⌋}. Because when

𝑡 =
𝛼

𝛼+𝛽/𝑐𝑑 , ⌊𝑡 (𝛼 + 𝛽/𝑐𝐷 )⌋ ⋅ ⌊(1 − 𝑡 )(𝛼 ⋅ 𝑐𝐷 + 𝛽)⌋ = 𝛼𝛽 , this maximum value is certainly not smaller

than 𝛼𝛽 , providing a better lower bound for 𝛼
∗ ⋅ 𝛽

∗
. A better lower bound allows us to prune more

𝛼 and 𝛽 values, thereby improving efficiency.

Based on the emptiness theorem and the non-emptiness theorem, we propose the algorithm

GetIDS++, as shown in Algorithm 3. Similar to the GetIDS algorithm, GetIDS++ considers each

𝛼 = 1, . . . , 𝑝 and 𝛽 = 1, . . . , 𝑝 . However, unlike GetIDS, which sequentially enumerates 𝛼 and

𝛽 , GetIDS++ uses a divide-and-conquer approach to leverage the emptiness theorem. For 𝛼 , the

function Divide-a(𝛼𝑙 , 𝛼𝑢 ) in GetIDS++ is responsible for considering all alpha values in the range

[𝛼𝑙 + 1, 𝛼𝑢 − 1]. First, it determines a middle 𝛼 value 𝛼𝑚 using the average of 𝛼𝑙 and 𝛼𝑢 (line 12),
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Algorithm 3: GetIDS++(𝐺)
Input: A directed graph𝐺 = (𝑉 , 𝐸).
Output: 𝐷

𝛼∗,𝛽
∗ .

1 𝑝 ← Getp(𝐺);
2 𝑚𝑎𝑥𝑎𝑏 ← 𝑝 × 𝑝 ,𝑚𝑎𝑥𝑎 ← 𝑝 ,𝑚𝑎𝑥𝑏 ← 𝑝 ;

3 𝑢𝑝𝑝𝑒𝑟 [0] ← max𝑥∈𝑉 𝑑
𝐼
𝑥 , 𝑢𝑝𝑝𝑒𝑟 [𝑝 + 1] ← 𝑝 ;

4 Divide-a(0, 𝑝 + 1);
5 𝑢𝑝𝑝𝑒𝑟 [0] ← max𝑥∈𝑉 𝑑

𝑂
𝑥 , 𝑢𝑝𝑝𝑒𝑟 [𝑝 + 1] ← 𝑝 ;

6 Divide-b(0, 𝑝 + 1);
7 return GetD(𝐺,𝑚𝑎𝑥𝑎,𝑚𝑎𝑥𝑏);
8 Function Divide-a(𝛼𝑙 , 𝛼𝑢 )
9 if 𝛼𝑙 > 𝛼𝑢 − 2 then return;

10 𝛼𝑚 ← ⌊(𝛼𝑙 + 𝛼𝑢 )/2⌋;
11 𝛼

1
← 𝛼𝑙 , 𝛼2

← 𝛼𝑢 , 𝛽1 ← 𝑢𝑝𝑝𝑒𝑟 [𝛼𝑙 ] + 1, 𝛽
2
← 𝑢𝑝𝑝𝑒𝑟 [𝛼𝑢 ] + 1;

12 𝑢𝑝𝑝𝑒𝑟 [𝛼𝑚] ← ⌈ 𝛽1(𝛼𝑚−𝛼2)+𝛽2(𝛼1−𝛼𝑚 )
𝛼1−𝛼2

⌉ − 1; // Theorem 10

13 if 𝛼𝑚 ×𝑢𝑝𝑝𝑒𝑟 [𝛼𝑚] ≤𝑚𝑎𝑥𝑎𝑏 then 𝛼𝑚 is pruned;

14 else if GetD(𝛼𝑚, ⌊𝑚𝑎𝑥𝑎𝑏

𝛼𝑚
⌋ + 1) = ∅ then 𝛼𝑚 is pruned;

15 else // Binary search

16 𝛽𝑙 ← ⌊𝑚𝑎𝑥𝑎𝑏

𝛼𝑚
⌋ + 1, 𝛽𝑢 ← 𝑢𝑝𝑝𝑒𝑟 [𝛼𝑚];

17 while 𝛽𝑙 < 𝛽𝑢 do
18 𝛽𝑚 ← ⌊(𝛽𝑙 + 𝛽𝑢 )/2⌋;
19 if GetD(𝐺,𝛼𝑚, 𝛽𝑚) ≠ ∅ then 𝛽𝑙 ← 𝛽𝑚 + 1;

20 else 𝛽𝑢 ← 𝛽𝑚 ;

21 𝛽
max

(𝛼𝑚) ← 𝛽𝑙 , 𝑢𝑝𝑝𝑒𝑟 [𝛼𝑚] ← 𝛽
max

(𝛼𝑚);
22 𝐷𝛼𝑚 ,𝛽max(𝛼𝑚 ) ←GetD(𝐺,𝛼𝑚, 𝛽

max
(𝛼𝑚));

23 𝑐𝐷 ← ∣𝐷𝑂

𝛼𝑚 ,𝛽max(𝛼𝑚 )∣/∣𝐷
𝐼

𝛼𝑚 ,𝛽max(𝛼𝑚 )∣;
24 forall 𝛼 ′

= ⌊𝑡 (𝛼𝑚 + 𝛽
max

(𝛼𝑚)/𝑐𝐷 )⌋ , 𝛽 ′ = ⌊(1 − 𝑡 )(𝛼𝑚 ⋅ 𝑐𝐷 + 𝛽
max

(𝛼𝑚))⌋, where 𝑡 ∈ [0, 1] do
25 if 𝛼 ′ × 𝛽

′
>𝑚𝑎𝑥𝑎𝑏 then // Theorem 11

26 𝑚𝑎𝑥𝑎𝑏 ← 𝛼
′ × 𝛽

′
,𝑚𝑎𝑥𝑎 ← 𝛼

′
,𝑚𝑎𝑥𝑏 ← 𝛽

′
;

27 Divide-a(𝛼𝑙 , 𝛼𝑚);
28 Divide-a(𝛼𝑚, 𝛼𝑢 );

29 Function Divide-b(𝛽𝑙 , 𝛽𝑢 )
30 Same as lines 9-28 but interchanging 𝛼 with 𝛽 ;

then considers 𝛼𝑚 . Next, the algorithm recursively calls Divide-a(𝛼𝑙 , 𝛼𝑚) and Divide-a(𝛼𝑚, 𝛼𝑢 ) to
further consider the alpha values in [𝛼𝑙 + 1, 𝛼𝑚 − 1] and [𝛼𝑚 + 1, 𝛼𝑢 − 1], respectively (lines 27-28).

For a fixed 𝛼𝑚 , the algorithm first uses the emptiness theorem to obtain an upper bound

𝑢𝑝𝑝𝑒𝑟 [𝛼𝑚] for 𝛽
max

(𝛼𝑚) (line 12). If 𝛼𝑚 × 𝑢𝑝𝑝𝑒𝑟 [𝛼𝑚] is still not greater than 𝑚𝑎𝑥𝑎𝑏, then

𝛼𝑚×𝛽
max

(𝛼𝑚)will also not exceed𝑚𝑎𝑥𝑎𝑏, and 𝛼𝑚 can be pruned without calculating the exact value

of 𝛽
max

(𝛼𝑚) (line 13). If 𝛼𝑚 × 𝑢𝑝𝑝𝑒𝑟 [𝛼𝑚] is greater than𝑚𝑎𝑥𝑎𝑏, this suggests that 𝛼𝑚 × 𝛽
max

(𝛼𝑚)
might exceed𝑚𝑎𝑥𝑎𝑏. In this case, on line 13, the algorithm sets 𝛽 = ⌊𝑚𝑎𝑥𝑎𝑏

𝛼𝑚
⌋ + 1, i.e., the smallest

integer such that 𝛼𝑚 × 𝛽 > 𝑚𝑎𝑥𝑎𝑏, and tests whether 𝐷
𝛼𝑚,⌊𝑚𝑎𝑥𝑎𝑏

𝛼𝑚
⌋+1 is empty. If it is empty, this

indicates that 𝛼𝑚×𝛽
max

(𝛼𝑚)will also not exceed𝑚𝑎𝑥𝑎𝑏, and 𝛼𝑚 is pruned (line 13). If it is not empty,

this means that 𝛼𝑚 ×𝛽
max

(𝛼𝑚) is greater than𝑚𝑎𝑥𝑎𝑏, and at this point, a binary search is performed

to calculate the exact value of 𝛽
max

(𝛼𝑚) (lines 16-21). Although the algorithm could directly use

𝛼𝑚 × 𝛽
max

(𝛼𝑚) to update𝑚𝑎𝑥𝑎𝑏, a better approach is to potentially find a larger value to update
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Divide-a(0, 3)
10:𝛼𝛼𝑚𝑚 ← 1 
11:𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 1 ← 21 
21:Binary search: 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 1 ← 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 1 ← 7 
25:When 𝛼𝛼′ = 2, 𝛽𝛽′ = 4, 𝛼𝛼′ × 𝛽𝛽′ > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
26:𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ← 2 × 4 = 8 
27:Divide-a(1, 3)

Divide-a(1, 3)
10:𝛼𝛼𝑚𝑚 ← 2 
11:𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 2 ← 5 
12:GetD 2, 5 = ∅, 𝛼𝛼𝑚𝑚 = 2 is pruned

Divide-b(0, 3)
30:𝛽𝛽𝑚𝑚 ← 1 
30:𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 1 ← 8 
30:8 × 1 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝛽𝛽𝑚𝑚 = 1 is pruned
30:Divide-b(1, 3)

Divide-b(1, 3)
30:𝛽𝛽𝑚𝑚 ← 2 
30:𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 2 ← 6 
30:GetD 2, 5 = ∅, 𝛽𝛽𝑚𝑚 = 2 is pruned

GetIDS++(𝐺𝐺)
1:𝑢𝑢 ← Getp 𝐺𝐺 = 2
2:𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ← 2 × 2 = 4 
3:𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 0 ← 30, 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 3 ← 2 
4:Divide-a(0, 3)
5:𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 0 ← 10, 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 3 ← 2
6:Divide-b(0, 3)
7:return GetD(𝐺𝐺, 2, 4)

Fig. 4. An illustrative example of GetIDS++.

𝑚𝑎𝑥𝑎𝑏 using the non-emptiness theorem. Thus, in lines 24-26, the algorithm uses the method from

the non-emptiness theorem to update𝑚𝑎𝑥𝑎𝑏. After the update terminates, the algorithm proceeds

with deeper recursive calls (lines 27-28).

TheGetIDS++ algorithm uses the functionDivide-a to compute𝐷
𝛼
∗
,𝛽

∗ . First,GetIDS++ computes

𝑝 (line 1). Since the function Divide-a(𝛼𝑙 , 𝛼𝑢 ) requires 𝑢𝑝𝑝𝑒𝑟 [𝛼𝑙 ] and 𝑢𝑝𝑝𝑒𝑟 [𝛼𝑢] in line 11, these

values need to be computed before calling Divide-a(𝛼𝑙 , 𝛼𝑢 ). The algorithm GetIDS++ sets 𝑢𝑝𝑝𝑒𝑟 [0]
as max𝑥∈𝑉 𝑑

𝐼
𝑥 , which is the upper bound for 𝛽

max
(0), and sets 𝑝 as 𝑢𝑝𝑝𝑒𝑟 [𝑝 + 1], which is the upper

bound for 𝛽
max

(𝑝 + 1) (line 3). Then, the algorithm calls the function Divide-a(0, 𝑝 + 1) to consider

all alpha values and update𝑚𝑎𝑥𝑎𝑏 (line 4). Symmetrically, the algorithm considers all beta values

(lines 5-6). After considering all alpha and beta values,𝑚𝑎𝑥𝑎𝑏 has been updated to its maximum

value 𝛼
∗ ⋅ 𝛽

∗
, and the algorithm then returns 𝐷𝑚𝑎𝑥𝑎,𝑚𝑎𝑥𝑏 . Next, we give an running example of

GetIDS++ and prove its correctness.

Example 3. We present the execution of GetIDS++ on the Actor1 dataset (∣𝑉 ∣ = 32, 271, ∣𝐸∣ =
36, 242) in Figure 4. The figure illustrates the critical steps of the algorithm and their corresponding
line numbers in the pseudocode. When invoking GetIDS++(𝐺), the algorithm first calls Getp(𝐺) to
compute 𝑝 = 2. Since 𝐷

2,2 ≠ ∅,𝑚𝑎𝑥𝑎𝑏 can be updated as𝑚𝑎𝑥𝑎𝑏 =𝑚𝑎𝑥𝑎 ×𝑚𝑎𝑥𝑏 = 2× 2. With 𝑝 = 2,
the algorithm considers 𝛼 = 1, 2 and their corresponding 𝛽

max
(𝛼) values, as well as 𝛽 = 1, 2 and their

corresponding 𝛼
max

(𝛽) values. These four values of 𝛼 and 𝛽 are considered in the four Divide functions
shown in the figure, respectively.

In Divide-a(0, 3), the algorithm considers 𝛼𝑚 = 1 and its 𝛽
max

(1). First, it computes the upper bound
for 𝛽

max
(1) as 𝑢𝑝𝑝𝑒𝑟 [1] = 21. Since 𝛼𝑚 × 𝑢𝑝𝑝𝑒𝑟 [1] = 21 > 𝑚𝑎𝑥𝑎𝑏 (line 13) and 𝐷

1,5 ≠ ∅ (line 14),
𝛼𝑚 = 1 cannot be pruned. Instead, binary search is used to precisely calculate 𝛽

max
(𝛼𝑚) = 7, which

also indicates that 𝐷
1,7 ≠ ∅. Although 1 × 7 >𝑚𝑎𝑥𝑎𝑏 = 4, the algorithm does not update𝑚𝑎𝑥𝑎𝑏 to

7. Instead, it searches for a better solution in lines 24-26. When 𝑡 = 0.6, 𝛼 ′ = 2, and 𝛽 ′ = 4, we have
𝐷
2,4 ≠ ∅. Therefore,𝑚𝑎𝑥𝑎𝑏 is updated to a higher value of 2 × 4 = 8.
The algorithm then proceeds to Divide-a(1, 3) to consider 𝛼𝑚 = 2. Here, if and only if 𝛽

max
(2) ≥ 5

would result in 2 × 𝛽
max

(2) >𝑚𝑎𝑥𝑎𝑏, and 𝛼𝑚 can be pruned. To confirm whether 𝐷
2,5 is empty, the

algorithm invokes GetD(2, 5). Since 𝐷
2,5 = ∅, 𝛼𝑚 = 2 is pruned.

Next, the algorithm returns to GetIDS++ and enters Divide-b(0, 3) to consider 𝛽𝑚 = 1. First, it
calculates 𝛼

max
(1) ≤ 𝑢𝑝𝑝𝑒𝑟 [1] = 8. As a result, 𝛽𝑚 ×𝛼

max
(𝛽𝑚) ≤ 1× 8 ≤𝑚𝑎𝑥𝑎𝑏, and the current 𝛽𝑚 is

1

Data source: https://github.com/Yalong-Zhang/maxab.
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also pruned. Using a process similar to Divide-a(1, 3) for 𝛼𝑚 = 2, it is confirmed in Divide-b(1, 3) that
𝛽𝑚 = 2 can also be pruned. Finally, when 𝛼 = 2 and 𝛽 = 4, the product 𝛼 × 𝛽 reaches its maximum
value, and GetIDS++ returns 𝐷

2,4.

Theorem 12. Algorithm GetIDS++ can correctly output 𝐷
𝛼
∗
,𝛽

∗ .

The time complexity of GetIDS++ is 𝑂(𝑛𝑓 ⋅ ∣𝐸∣1.5), where 𝑛𝑓 is the number of network flow

computations performed in GetIDS++. For each 𝛼𝑚 and 𝛽𝑚 , the worst-case scenario involves using

binary search and network flow, so theoretically 𝑛𝑓 ∈ 𝑂(𝑝 ⋅ log ∣𝑉 ∣). However, in the real-world

graphs used in our experiments, 𝑛𝑓 ≪ 𝑝 ⋅ log ∣𝑉 ∣. This is because about 99% of the 𝛼𝑚 and 𝛽𝑚
values were pruned in line 13 and line 14, making it unnecessary to use binary search to compute

the exact values of 𝛽
max

(𝛼𝑚) and 𝛼max
(𝛽𝑚).

6 Approximation IDS Algorithms
This section further studies the approximation IDS algorithm. First, we introduce some existing ap-

proximation algorithms which originally designed for the traditional DS problem. Next, we propose

a novel (2 + 𝜖)-approximation algorithm with a near-linear time complexity of 𝑂(∣𝐸∣ log
1+𝜖 ∣𝑉 ∣),

which offers both strong approximation performance and high efficiency.

It is worth mentioning that the 2 + 𝜖 approximation factor of our algorithm is based on the

DS problem, where the density of the approximate subgraph 𝜌 satisfies the condition 𝜌 ≥
1

2+𝜖
𝜌
∗
.

However, since the density of IDS is always no greater than the density of DS, the density of these

approximate subgraphs must also satisfy 𝜌 ≥
1

2+𝜖
𝜌∗, where 𝜌∗ is the density of IDS. This indicates

that our approximation algorithm can approximate DS and, consequently, can also approximate

IDS.

6.1 Existing approximation algorithms
Since the density of the DS is greater than or equal to that of the IDS, existing approximation

algorithms for the DS can also be used to approximate the IDS. Below, we introduce the key ideas of

the state-of-the-art approximation algorithms SingleCore [24], AllCore [30], and CP-Approx [29].

Definition 6. ((𝛼, 𝛽)-core) Given a graph 𝐺 , the (𝛼, 𝛽)-core of 𝐺 , denoted by 𝐶𝛼,𝛽 , is defined as
the maximal subgraph 𝐺[𝐶𝑂

𝛼,𝛽 ,𝐶
𝐼
𝛼,𝛽 ], such that in 𝐺[𝐶𝑂

𝛼,𝛽 ,𝐶
𝐼
𝛼,𝛽 ], for all 𝑥 ∈ 𝐶

𝑂
𝛼,𝛽 , 𝑑

𝑂
𝑥 ≥ 𝛼 , and for all

𝑦 ∈ 𝐶
𝐼
𝛼,𝛽 , 𝑑

𝐼
𝑦 ≥ 𝛽 .

Theorem 13. [30] Given a graph 𝐺 , we have 𝜌(𝐶𝛼,𝛽 ) ≥
√
𝛼𝛽 .

𝐶𝛼,𝛽 also represents a dense subgraph, but it is not a density-based model, so its density guarantee

is not as strong as the 2

√
𝛼𝛽 guarantee of 𝐹𝛼,𝛽 and 𝐷𝛼,𝛽 (Lemma 1). However, since computing a

core is less expensive, many core-based approximation algorithms have been developed, such as

SingleCore and AllCore.

The core-based SingleCore algorithm [24]. The SingleCore algorithm (as shown in Algorithm 4)

uses a peeling technique, where in each step, the node with the smallest indegree or outdegree

in the current graph is selected and removed (lines 3-7). This process is repeated until the graph

becomes empty (line 2). After removing each node, the algorithm records the density of the current

graph (line 8) and finally selects the graph with the highest density during the peeling process as

the output (line 9). Core computation algorithms typically use a similar peeling method. During

the peeling process in SingleCore, 𝐺 ′[𝑆,𝑇 ] sequentially becomes 𝐶
0,0, 𝐶1,1, 𝐶2,2, . . ., meaning that

one peeling process can compute all non-empty 𝐶𝑘,𝑘 .
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Algorithm 4: SingleCore(𝐺)[24]
Input: A directed graph𝐺 = (𝑉 , 𝐸).
Output: A (

√
𝑐∗ + 1√

𝑐∗
)-approximate IDS 𝐷 .

1 𝜌∗ ← 𝜌(𝑉 ,𝑉 ), 𝐷 ← 𝐺 ,𝐺
′[𝑆,𝑇 ] = 𝐺 , 𝑘 ← 0;

2 while𝐺 ′ is not empty do
3 𝑥 = argmin𝑥∈𝑆 𝑑

𝑂
𝑥 (𝐺 ′), 𝑦 = argmin𝑦∈𝑇 𝑑

𝐼
𝑦 (𝐺 ′);

4 if min{𝑑𝑂𝑥 , 𝑑
𝐼
𝑦} > 𝑘 then

5 𝑘 ← min{𝑑𝑂𝑥 , 𝑑
𝐼
𝑦}; // Now, we have 𝐺

′[𝑆,𝑇 ] = 𝐶𝑘,𝑘

6 if 𝑑𝑂𝑥 ≤ 𝑑
𝐼
𝑦 then𝐺

′[𝑆,𝑇 ] ← 𝐺
′[𝑆 \ {𝑥},𝑇 ], 𝑆 ← 𝑆 \ {𝑥};

7 else𝐺 ′[𝑆,𝑇 ] ← 𝐺
′[𝑆,𝑇 \ {𝑦}],𝑇 ← 𝑇 \ {𝑦};

8 if 𝜌(𝑆,𝑇 ) > 𝜌∗ then 𝜌∗ ← 𝜌(𝑆,𝑇 ), 𝐷 ← 𝐺
′[𝑆,𝑇 ];

9 return 𝐷 ;

Since peeling the graph to an empty graph takes 𝑂(∣𝐸∣) time complexity, the overall time com-

plexity of SingleCore is also 𝑂(∣𝐸∣) [24]. While SingleCore has a linear-time complexity, its ap-

proximation ratio is not very good. Previous works [24, 30] have proved that the approximation

ratio of SingleCore is worse than 2. However, to the best of our knowledge, there is no work that

has determined the exact approximation ratio of SingleCore. We are the first to prove that the

approximation ratio of SingleCore is (
√
𝑐∗ + 1√

𝑐∗
). Next, we present our results.

Lemma 3. Given a graph 𝐺 , if 𝐹𝛼,𝛽 or 𝐷𝛼,𝛽 is non-empty, then 𝐶⌈𝛼⌉,⌈𝛽⌉ is also non-empty.

Based on Lemma 3, we prove the approximation ratio of SingleCore in Theorem 14.

Theorem 14. The output 𝐷 = 𝐺[𝐷𝑂
, 𝐷

𝐼 ] of the algorithm SingleCore satisfies 𝜌(𝐷𝑂
, 𝐷

𝐼 ) ≥

1√
𝑐∗+ 1√

𝑐∗

𝜌
∗
≥

1√
𝑐∗+ 1√

𝑐∗

𝜌
∗, i.e., SingleCore is a (

√
𝑐∗ + 1√

𝑐∗
)-approximation algorithm.

According to Theorem 14, although SingleCore is highly efficient with its linear-time complexity,

its approximation ratio is (
√
𝑐∗+ 1√

𝑐∗
). When the 𝑐

∗
of the graph is large (e.g., 10

5

), the approximation

performance of SingleCore can be very bad, as confirmed by our experiments.

The core-based AllCore algorithm [30]. Unlike SingleCore, which uses a single peeling process,

AllCore [30] uses peeling for 𝑂(
√
∣𝐸∣) times to compute all non-empty 𝐶𝛼,𝛽 and then selects the

non-empty 𝐶𝛼,𝛽 that maximizes 𝛼𝛽 as the approximate subgraph. Since AllCore performs 𝑂(
√
∣𝐸∣)

peeling iterations, with each peeling taking 𝑂(∣𝐸∣), its time complexity is 𝑂(∣𝐸∣1.5) [30]. Although
this complexity is much higher than the linear-time complexity 𝑂(∣𝐸∣), AllCore guarantees an

approximation ratio of 2. However, in our experiments, AllCore consumes too much time, and on

all of the datasets, it is even slower than our exact algorithm GetIDS++.

The convex-programming-based CP-Approx algorithm [29]. The (1 + 𝜖)-approximation algo-

rithm CP-Approx [29] relaxes the convex-programming-based algorithm CP-Exact presented for

computing the exact DS, sacrificing density to save runtime. The time complexity of CP-Approx
is 𝑂(𝑡𝐹𝑊 ⋅ log

1+𝜖 ∣𝑉 ∣), where 𝑡𝐹𝑊 is the time taken for several time-consuming convex program-

ming and maximum flow computation, leading to inefficiency. As confirmed by our experiments,

CP-Approx struggles to achieve both good approximation quality and low runtime simultaneously.

In summary, existing approximation algorithms either have poor practical approximation quali-

ties (SingleCore and CP-Approx algorithms with large 𝜖) or are very time-consuming (AllCore and
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Fig. 5. The density of core when varying 𝑘 on dataset IM (∣𝑉 ∣ = 896𝐾 , ∣𝐸∣ = 3.8𝑀 , 𝜌∗ = 45.52).

CP-Approx algorithms with small 𝜖). Therefore, it is necessary to design a novel approximation

algorithm that achieves both good approximation performance and less runtime.

6.2 A novel (2 + 𝜖)-approximation algorithm
SingleCore [24] performs a single peeling operation, which is fast but does not provide a good

approximation guarantee. On the other hand, AllCore [30] performs 𝑂(
√
∣𝐸∣) peeling operations,

offering a better approximation guarantee but being slower. Our proposed algorithm,MultiCore,
performs a small amount of peeling operations, achieving a balance between good approximation

guarantees and fast runtime. Besides,MultiCore uses the error parameter 𝜖 to trade off between

approximation accuracy and running time.

Intuitively, the peeling rationale behindMultiCore is inspired by the peeling approach used in

SingleCore, which only finds the core subgraph where 𝛼 = 𝛽 . However, MultiCore introduces a
novel strategy by selecting multiple values of 𝑘 ∈ (0,+∞) and searching for core subgraphs where

𝛼 ≈ 𝑘 ⋅ 𝛽 . Among all the core subgraphs found, it selects the one with the highest density as the

approximate IDS. This non-trivial approach significantly improves the approximation ratio from√
𝑐∗ + 1√

𝑐∗
in SingleCore to 2 + 𝜖 . Next, we use an example to illustrate this rationale.

Example 4. MultiCore computes all (𝛼, 𝛽)-cores where 𝛼 ≈ 𝑘 ⋅ 𝛽 in a single peeling process (the
Peeling function in Algorithm 5). The black line in Figure 5 shows how the choice of 𝑘 affects the
density of the core obtained during the peeling process on the IM dataset (∣𝑉 ∣ = 896𝐾 , ∣𝐸∣ = 3.8𝑀 ,
𝜌
∗
= 45.52). (1) For SingleCore, it only invokes once peeling and computes the 𝐶𝛼,𝛽 where 𝛼 = 𝛽 (i.e.,

𝑘 = 1), so it can only consider the core on the green line. Consequently, it finds a subgraph with a
density of only 41.26. (2) AllCore invokes the peeling function 𝑂(

√
∣𝐸∣) times to compute all possible

core subgraphs, i.e., all core subgraphs on the black line, which is very time-consuming. (3) In contrast,
MultiCore selects a series of 𝑘 values, shown by the blue and green lines in the figure. This strategy
involves only a small number of peelings while still finding a core with high density. For example,
MultiCore chooses 𝑘 = 12.05 and obtains a core with a density of 45.20 ≈ 𝜌

∗
= 45.52. Therefore,

MultiCore gets a core subgraph with near-optimal density.

Next, we give a theorem as the theoretical foundation of MultiCore. This theorem demonstrates

that 𝐶
⌈ 𝜌

∗
√
𝑐∗

𝑘+𝑐∗
⌉,⌈ 𝑘𝜌

∗
√
𝑐∗

𝑘+𝑐∗
⌉
can serve as a

√
𝑘𝑐∗

𝑘+𝑐∗
-approximate subgraph. Subsequently, we will explain how

to compute 𝐶
⌈ 𝜌

∗
√
𝑐∗

𝑘+𝑐∗
⌉,⌈ 𝑘𝜌

∗
√
𝑐∗

𝑘+𝑐∗
⌉
and how to vary 𝑘 to ensure obtaining a

1

2+𝜖
-approximate subgraph.

Theorem 15. Given a graph 𝐺 and a number 𝑘 ∈ (0,+∞), 𝐶
⌈ 𝜌

∗
√
𝑐∗

𝑘+𝑐∗
⌉,⌈ 𝑘𝜌

∗
√
𝑐∗

𝑘+𝑐∗
⌉
is non-empty and its

density 𝜌 ≥

√
𝑘𝑐∗

𝑘+𝑐∗
𝜌
∗
≥

√
𝑘𝑐∗

𝑘+𝑐∗
𝜌
∗.
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Algorithm 5:MultiCore(𝐺, 𝜖)
Input: A directed graph𝐺 = (𝑉 , 𝐸), the error parameter 𝜖 > 0.

Output: A (2 + 𝜖)-approximate IDS 𝐷 .

1 𝜌∗ ← 𝜌(𝑉 ,𝑉 ), 𝐷 ← 𝐺 , E ← 𝜖
2 + 4𝜖 + 2 +

√
(𝜖2 + 4𝜖 + 2)2 − 4;

2 Let 𝑁 be the minimum even integer such that 𝑁 ≥ logE /2 ∣𝑉 ∣ − 1;

3 for 𝑖 = −𝑁,−𝑁 + 2, . . . , 𝑁 − 2, 𝑁 do Peeling((E
2
)𝑖 ) ;

4 return 𝐷 ;

5 Function Peeling(𝑘)
6 𝛼 ← 0, 𝛽 ← 0,𝐺

′[𝑆,𝑇 ] ← 𝐺 ;

7 while𝐺 ′ is not empty do
8 𝑥 = argmin𝑥∈𝑆 𝑑

𝑂
𝑥 (𝐺 ′), 𝑦 = argmin𝑦∈𝑇 𝑑

𝐼
𝑦 (𝐺 ′);

9 if 𝑑𝑂𝑥 (𝐺) < 𝛼 then
10 𝐺

′[𝑆,𝑇 ] ← 𝐺
′[𝑆 \ {𝑥},𝑇 ], 𝑆 ← 𝑆 \ {𝑥};

11 else if 𝑑𝐼𝑦 (𝐺) < 𝛽 then
12 𝐺

′[𝑆,𝑇 ] ← 𝐺
′[𝑆,𝑇 \ {𝑦}],𝑇 ← 𝑇 \ {𝑦};

13 else
// Now, we have 𝐺

′[𝑆,𝑇 ] = 𝐶𝛼,𝛽 ;

14 if 𝛽 > 𝑘 ⋅ 𝛼 then 𝛼 ← 𝛼 + 1;

15 else 𝛽 ← 𝛽 + 1;

16 if 𝜌(𝑆,𝑇 ) > 𝜌∗ then 𝜌∗ ← 𝜌(𝑆,𝑇 ), 𝐷 ← 𝐺
′[𝑆,𝑇 ];

In theMultiCore algorithm, we present a method to obtain 𝐶
⌈ 𝜌

∗
√
𝑐∗

𝑘+𝑐∗
⌉,⌈ 𝑘𝜌

∗
√
𝑐∗

𝑘+𝑐∗
⌉
, which allows us to

obtain a

√
𝑘𝑐∗

𝑘+𝑐∗
-approximate subgraph. Let E = 𝜖

2+4𝜖+2+
√
(𝜖2 + 4𝜖 + 2)2 − 4, and the solution to the

inequality

√
𝑘𝑐∗

𝑘+𝑐∗
≥

1

2+𝜖
is 𝑐

∗
∈ [ 2𝑘

E
,
𝑘E
2
]. This means that if 𝑐

∗
happens to fall within the range [ 2𝑘

E
,
𝑘E
2
],

we can obtain a (2+𝜖)-approximate subgraph𝐶
⌈ 𝜌

∗
√
𝑐∗

𝑘+𝑐∗
⌉,⌈ 𝑘𝜌

∗
√
𝑐∗

𝑘+𝑐∗
⌉
. Based on the definition of 𝑐

∗
, we know

that 𝑐
∗
∈ [ 1

∣𝑉 ∣ , ∣𝑉 ∣], so we need to select multiple values of 𝑘 and obtain multiple intervals [ 2𝑘
E
,
𝑘E
2
]

such that the union of these intervals completely covers [ 1

∣𝑉 ∣ , ∣𝑉 ∣]. Specifically, let 𝑁 be a positive

and even integer, and let 𝑘 = (E /2)𝑖 , then by choosing 𝑖 = −𝑁,−𝑁 + 2, . . . ,−2, 0, 2, . . . , 𝑁 − 2, 𝑁 ,

we can cover the interval [(E
2
)−𝑁−1

, (E
2
)−𝑁+1] ∪ [(E

2
)−𝑁+1

, (E
2
)−𝑁+3] ∪ ⋯ ∪ [(E

2
)𝑁−3

, (E
2
)𝑁−1] ∪

[(E
2
)𝑁−1

, (E
2
)𝑁+1] = [(E

2
)−(𝑁+1)

, (E
2
)𝑁+1]. Solving the inequalities (E

2
)−(𝑁+1)

≤
1

∣𝑉 ∣ and (E
2
)𝑁+1

≥

∣𝑉 ∣, we get 𝑁 ≥ logE /2 ∣𝑉 ∣ − 1, i.e., 𝑁 should be set as the minimum even integer such that

𝑁 ≥ logE /2 ∣𝑉 ∣ − 1. Therefore, we need a total of −𝑁,−𝑁 + 2, . . . , 𝑁 − 2, 𝑁 , i.e., 𝑁 + 1 values

of 𝑘 , which means we need to compute 𝐶
⌈ 𝜌

∗
√
𝑐∗

𝑘+𝑐∗
⌉,⌈ 𝑘𝜌

∗
√
𝑐∗

𝑘+𝑐∗
⌉
a total of 𝑁 + 1 ≈ ⌈logE /2 ∣𝑉 ∣⌉ times. By

selecting the subgraph with the maximum density among these 𝐶
⌈ 𝜌

∗
√
𝑐∗

𝑘+𝑐∗
⌉,⌈ 𝑘𝜌

∗
√
𝑐∗

𝑘+𝑐∗
⌉
, we can obtain a

(2 + 𝜖)-approximate subgraph.

Using the above rationale, we propose the algorithm MultiCore, as shown in Algorithm 5. First,

MultiCore initializes 𝜌∗ and 𝐷 , and computes the values of E and 𝑁 (lines 1-2). Then,MultiCore

sets 𝑘 = (E
2
)𝑖 and calls the peeling function with the parameter 𝑘 (line 3). The Peeling function

gradually removes nodes from the original graph 𝐺 until an empty graph is obtained. During the

removal process, two values 𝛼 and 𝛽 are tracked (line 6), representing the thresholds such that all

nodes in 𝑆 with outdegree less than 𝛼 and nodes in 𝑇 with indegree less than 𝛽 should be removed
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Table 2. Statistics of datasets.

For the datasets HE, OR, and TW, the runtime of computing 𝜌
∗
exceeds time limit 10

6

seconds, so we use the density of the

IDS to approximate 𝜌
∗
.

Dataset Category ∣𝑉 ∣ ∣𝐸∣ 𝜌
∗

𝑝

IM affiliation 896.3K 3.8M 45.5170 20

HE citation 28.1K 4.6M ≈ 776.4999 371

TR lexical 1.2M 83.6M 2,086.3359 440

WI hyperlink 4.8M 113.1M 2,170.7350 419

IN hyperlink 7.4M 194.1M 6,924.0780 3,462

DE interaction 33.8M 301.2M 2,345.1849 970

OR affiliation 8.7M 327.0M ≈ 2079.0586 438

UK hyperlink 39.4M 936.4M 7,642.1016 454

IT hyperlink 41.3M 1.2B 4,473.7718 1,834

TW social 40.1M 1.4B ≈ 4581.4683 1,427

(lines 8-12). For each node removed, the algorithm records the current density (line 16). Specifically,

when every node in 𝑆 of the current graph 𝐺
′[𝑆,𝑇 ] has an outdegree not less than 𝛼 and every

node in𝑇 has an indegree not less than 𝛽 , we have obtained𝐶𝛼,𝛽 (line 13). At this point, either 𝛼 or

𝛽 needs to be increased to continue peeling nodes (lines 14-15). Finally, when 𝛼 and 𝛽 become large

enough, all nodes will be peeled off, and𝐺
′[𝑆,𝑇 ] will become an empty graph. For each enumerated

𝑘 = (E
2
)𝑖 , the peeling process is repeated. The subgraph with the highest density encountered

during this process is recorded, and this subgraph is output as the approximate IDS (line 4). Next,

we prove the correctness of MultiCore.

Theorem 16. The MultiCore can output a subgraph 𝐷 whose density 𝜌 ≥
1

2+𝜖
𝜌
∗
≥

1

2+𝜖
𝜌
∗, and the

time complexity and space complexity of MultiCore is 𝑂(∣𝐸∣ ⋅ log
1+𝜖 ∣𝑉 ∣) and 𝑂(∣𝐸∣), respectively.

Given 𝜖 > 0,MultiCore requires only a small number of𝑂(∣𝐸∣)-time Peeling function invocations,
making it highly efficient. For example, in our experiments, on the large TW graph with 40.1 million

nodes and 1.5 billion edges, setting 𝜖 = 0.5 requires only 13 peeling operations to obtain the

approximate subgraph. Therefore,MultiCore can efficiently finish the computation in near-linear

time. In contrast, the time complexity of the CP-Approx algorithm is as high as 𝑂(𝑡𝐹𝑊 ⋅ log
1+𝜖 ∣𝑉 ∣),

where 𝑡𝐹𝑊 denotes the time taken for several time-consuming convex programming and maximum

flow computations. Although the approximation guarantee (1 + 𝜖) of CP-Approx is tighter than the

(2 + 𝜖) guarantee of MultiCore, in our experiments on real-world graphs, the proposed MultiCore
algorithm often produces subgraphs with higher (i.e., better) density in significantly less runtime

compared to CP-Approx.

7 Experiments

Algorithms. For exact algorithms, we implement our proposed algorithms GetIDS (Algorithm 2)

and GetIDS++ (Algorithm 3). We compare our algorithms with the flow-based algorithm DC-Exact
[30] and the SOTA algorithmCP-Exact [29] for computing the densest subgraph. For approximation

algorithms, we evaluate the (
√
𝑐∗+ 1√

𝑐∗
)-approximation algorithm SingleCore [24] (Algorithm 4) and

our new (2+ 𝜖)-approximation algorithmMultiCore (Algorithm 5) with the SOTA 2-approximation

algorithm AllCore [30] and (1 + 𝜖)-approximation algorithm CP-Approx [29]. All algorithms are

implemented in C++ with O3 optimization. Our experiments are conducted on a Linux system PC

with a 2.2GHz AMD 3990X 64-Core CPU and 256GB of memory. We set the upper limit of runtime

to 10
6

seconds.
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Fig. 6. Runtime of various exact algorithms.
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Fig. 7. Scalability testing on dataset WI.

Datasets. Following the concept of the “auxiliary bipartite graph” introduced in [29], we can

equivalently transform directed graphs and bipartite graphs. This allows our solutions to be directly

applied to bipartite graphs as well. Consequently, in addition to the six directed graphs HepPh
(HE),WikiFr (WI), IndoChina (IN),UKAll (UK), ITAll (IT), Twitter (TW), we also select four bipartite

graphs IMDB (IM), Trec (TR), Delicious (DE),Orkut (OR) to enhance the comprehensiveness of our

experimental evaluations. Detailed dataset information is shown in Table 2, which can be obtained

from the Network Repository [33].

7.1 Results of exact algorithms

Exp-1: Runtime of various exact algorithms. The results of this experiment are shown in

Figure 6, and we have the following observations: (1) The algorithms DC-Exact and GetIDS++ both

are flow-based algorithms. However, DC-Exact tackles the more challenging DS problem, which in

the worst case requires up to𝑂(∣𝑉 ∣2 log ∣𝑉 ∣) network flow computations [30]. In contrast,GetIDS++
addresses the simpler IDS problem, requiring only 𝑂(𝑝 ⋅ log ∣𝑉 ∣) network flow computations in the

worst case. Consequently, the runtime of GetIDS++ is significantly lower than that of DC-Exact,
highlighting the computational efficiency of the IDS problem. (2) The runtime of the CP-Exact
algorithm exhibits an unstable trend. For example, its runtime on the smaller million-edge dataset

HE exceeded 10
6

seconds, whereas on the billion-edge dataset IT, it achieves a faster runtime of

43,044 seconds, indicating the instability of convex-programming-based algorithm CP-Exact for
computing the densest subgraph. (3) In contrast to CP-Exact, the runtime of our GetIDS++ is more

stable, with runtime on all datasets under 15,000 seconds. Moreover, GetIDS++ is significantly

faster than DC-Exact (up to 3,589x), CP-Exact (up to 71,327x) and GetIDS (up to 158x).

For example, on the datasetHE, the runtimes forDC-Exact,CP-Exact,GetIDS, andGetIDS++ are
16,945 seconds, over 1,000,000 seconds, 823.45 seconds, and 14.02 seconds, respectively, indicating

a speedup of 1,209x, 71,327x and 59x for GetIDS++. Similarly, on the dataset OR, the runtimes for

DC-Exact, CP-Exact, GetIDS, and GetIDS++ are more than 1,000,000 seconds, more than 1,000,000

seconds, 279,438 seconds, and 1,765 seconds, respectively, indicating a speedup of 567x and 128x for

GetIDS++. These results demonstrate the significant efficiency of the proposedGetIDS++ algorithm.
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Table 3. Comparison between GetIDS and GetIDS++.
𝑛𝑏 and 𝑛𝑓 are the number of binary search and flow computations invoked in the corresponding algorithm.

Algorithm HE TR WI OR UK

GetIDS
𝑛𝑏 743 881 839 877 909

𝑛𝑓 8,898 16,574 17,055 16,063 18,928

GetIDS++
𝑛𝑏 6 7 8 5 7

𝑛𝑓 471 328 694 325 213

Table 4. Comparison between the DS and IDS.

𝜌
∗
and 𝜌

∗
denote the density of the DS and the IDS, respectively. The “similarity” of two subgraphs 𝐺[𝑆1,𝑇1]

and 𝐺[𝑆2,𝑇2] is defined as (∣𝑆1 ∩ 𝑆2∣ + ∣𝑇1 ∩𝑇2∣)/(∣𝑆1 ∪ 𝑆2∣ + ∣𝑇1 ∪𝑇2∣).
Dataset 𝜌

∗
𝜌
∗

Similarity

IM 45.5170 45.4899 (-0.0271) 6376/6796 = 0.938

TR 2,086.3359 2,086.3119 (-0.0240) 327972/328769 = 0.998

WI 2,170.7350 2,170.7350 (-0.0000) 793311/793311 = 1

IN 6,924.0780 6,924.0780 (-0.0000) 13889/13889 = 1

DE 2,345.1849 2,345.1814 (-0.0035) 806/808 = 0.998

UK 7,642.1016 7,642.1016 (-0.0000) 1769782/1769782 = 1

IT 4,473.7718 4,473.7718 (-0.0000) 1319477/1319477 = 1

Exp-2: Scalability testing. To evaluate the scalability of our solutions, we first generate eight

subgraphs by randomly sampling 20%, 40%, 60%, and 80% vertices or edges from the WI dataset
(similar results can be obtained on other datasets). The results are shown in Figure 7. As can be seen,

the runtime of our proposed algorithmGetIDS++ grows relatively slowly as the data scale increases,
whereas the runtime of GetIDS and CP-Exact increases rapidly. In particular, our GetIDS++ is 1-2

orders of magnitude faster than both GetIDS and CP-Exact in all cases. These results demonstrate

the high scalability of our GetIDS++ algorithm.

Exp-3: Comparison between GetIDS and GetIDS++. We select five datasets (similar results

can be obtained on other datasets) and record the number of binary searches and maximum flow

computations used by GetIDS and GetIDS++. The results are shown in Table 3. Since GetIDS
performs binary searches for every enumerated 𝛼 and 𝛽 , the number of binary searches and flow

computations is high. For example, on the UK dataset, the number of binary search and flow

computations reaches as high as 909 and 18,928, respectively. In contrast, GetIDS++ prunes most of

the enumerated 𝛼 and 𝛽 values, performing at most 7 binary searches and 213 flow computations.

These results demonstrate the effectiveness of the proposed pruning techniques integrated into

GetIDS++, making the computation of the IDS highly efficient.

Exp-4: Comparison between the DS and IDS. As shown in Table 4, the DS and IDS exhibit a

high degree of similarity. For instance, in the datasets WI, IN, UK, and IT, the subgraphs obtained
from both DS and IDS are identical. In the remaining datasets, the density of these subgraphs

differs by at most 0.0271, and their similarity is at least 0.938. These findings highlight the strong

correlation between DS and IDS, suggesting that the IDS is not only easier to compute but also

produces results comparable to those of the DS.

Exp-5: Comparison with other density-based model. In this experiment, we compare the

IDS model with the dense subgraph model proposed in [11], which is computed using the

CS-Community algorithm. Although CS-Community is designed for undirected graphs, [11] sug-

gests that it can also handle directed graphs by simply disregarding their directionality. The
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Table 5. Comparison between GetIDS++ and CS-Community.

Dataset Algorithm Density Runtime (sec)

HE
GetIDS++ 776.50 14.02

CS-Community 260.16 687.36

Epinions
GetIDS++ 91.92 0.73

CS-Community 47.77 98.37
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algorithm outputs multiple communities, and we select the one with the highest density for com-

parison. We evaluate the performance of the GetIDS++ algorithm and CS-Community on the HE
and Epinions (details in our case study) datasets, as summarized in Table 5 (only two datasets are

evaluated because CS-Community fails to complete computations on other datasets within 10
4

seconds). The results demonstrate that GetIDS++ identifies IDS subgraphs with significantly higher

densities and much faster runtime compared to the communities found by CS-Community. This is
because CS-Community handles directed graphs by naively ignoring directionality. While simple,

this approach fails to capture the directional structure of directed graphs, resulting in subgraphs

with lower densities. These findings highlight the limitations of applying undirected graph models

to directed graphs and underscore the importance of developing dense subgraph models specifically

tailored for directed graphs.

7.2 Results of approximation algorithms

Exp-6: Runtime and approximation ratio of different algorithms. For our (2 + 𝜖)-
approximation algorithmMultiCore, we set 𝜖 = 0.5 and denoted asMultiCore-0.5. For the (1 + 𝜖)-
approximation algorithm CP-Approx, we set 𝜖 to 1.5, 0.5, and 0.1, denoted as CP-Approx-1.5,
CP-Approx-0.5, and CP-Approx-0.1, respectively. The results are shown in Figure 8 and Figure 9.

In this experiment, we have the following observations. (1) The Single algorithm, while the

fastest among all tested algorithms, exhibits a significantly poor approximation ratio. For example,
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Fig. 10. Comparison between MultiCore and CP-Approx.

it has an approximation ratio of 12.9 on the UK dataset. (2) The AllCore algorithm exhibits a

considerably high runtime, reaching up to 10
6

seconds on the TW dataset, and does not provide

the best approximation ratio, exceeding 1.05 on seven of the ten datasets. (3) The algorithm

CP-Approx-1.5 shows a significant instability in its approximation ratio, peaking at 1.48 on the

OR dataset, and does not gain any runtime advantage overMultiCore-0.5. (4) Across all datasets,
MultiCore-0.5 runs faster than CP-Approx-0.5, and on 8 out of 10 datasets, the approximation ratio

of MultiCore-0.5 is better than or equal to that of CP-Approx-0.5. For example, on the HE dataset,

MultiCore-0.5 achieves an approximation ratio of 1.031, which is better than CP-Approx-0.5’s ratio
of 1.038, while its runtime is only 1.74 seconds, making it 7.6x faster than CP-Approx-0.5, which
takes 13.25 seconds. (5) Both CP-Approx-0.1 andMultiCore-0.5 achieve excellent approximation

ratios, remaining consistently below 1.05 across all datasets. Notably,MultiCore-0.5 is considerably
faster than CP-Approx-0.1 in all cases. For example, in the OR dataset, both algorithms achieve a

commendable approximation ratio of 1.0005, but their runtimes differ significantly: 15,430 seconds

for CP-Approx-0.1 versus just 819 seconds forMultiCore-0.5, yielding an impressive 18.8x speedup.

Overall, compared to other approximation algorithms, our proposedMultiCore algorithm strikes

an exceptional balance between excellent approximation performance and rapid runtime, aligning

well with our theoretical analysis in Section 6.

Exp-7: Comparison between MultiCore and CP-Approx with varying 𝜖. We conduct exper-

iments on the DE and IT datasets (similar results can be obtained on other datasets). For the

MultiCore algorithm, we set 𝜖 to 4, 2, 1, 0.75, 0.5, 0.25, 0.1. For the CP-Approx algorithm, we set

𝜖 to 5, 3, 2, 1.5, 1, 0.75, 0.5, 0.25, 0.1. The results are shown in Figure 10. Compared to CP-Approx,
MultiCore produces a subgraph with higher density in a shorter runtime on both datasets no matter

how 𝜖 varies. For example, on the DE dataset, MultiCore with 𝜖 = 0.5 finds a subgraph with an

approximation ratio as low as 1.0025 in 541 seconds. In contrast, CP-Approx with 𝜖 = 2 takes a

longer runtime of 603 seconds and only achieves an approximation ratio of 1.1299. On the IT dataset,

MultiCorewith 𝜖 = 2 takes just 575 seconds to find a subgraph with an approximation ratio of 1, i.e.,

the exact IDS. In comparison, CP-Approx with 𝜖 = 5 takes a longer runtime of 589 seconds, while

achieving only an approximation ratio of 1.2078. On the HE dataset, the runtime of the MultiCore
algorithm remains under 4 seconds for any 𝜖 setting, requiring only 3.53 seconds to produce a

near-optimal subgraph with an approximation ratio of 1.0005. In contrast, the CP-Approx algorithm
takes significantly longer runtime, requiring 41.60 seconds to obtain a subgraph with a worse

approximation ratio of 1.0027. On the OR dataset, the MultiCore algorithm consistently maintains

both efficient runtime and stable approximation ratios, whereas the runtime of the CP-Approx
algorithm grows rapidly, and its approximation ratio becomes highly unstable, reaching a poor

approximation ratio of 1.4811 when 𝜖 = 2. These results demonstrate that our proposed MultiCore
algorithm is efficient and provides high-quality approximations no matter how 𝜖 varies.
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Fig. 11. Case Studies on Epinions social network.

7.3 Case Study
This experiment utilizes the Epinions social network (∣𝑉 ∣ = 75, 879, ∣𝐸∣ = 508, 837)

2

to evaluate

the practical application of fraudulent detection using both the densest subgraph (DS) and the

integral densest subgraph (IDS) models. Epinions is a consumer review network where each node

represents a user, and each edge (𝑢
1
, 𝑢

2
) represents user 𝑢

1
trusting 𝑢

2
. The subgraph identified

by the DS has 𝑐
∗
= ∣𝑆∗∣/∣𝑇 ∗∣ = 1261/485. However, some fraudulent users may resort to bribing

others to gain trust, creating the illusion of being trusted by many. This behavior can lead to a

new DS with an even higher 𝑐
∗
(e.g., 𝑐

∗
= 1000/10). To simulate this scenario, we introduced 10

briber users and 1,000 bribed users into the network, where the bribed users randomly trusted the

briber users a total of 10,000 times—resulting in the addition of 10,000 edges from the bribed users

to the briber users. In practical scenarios, bribed users may also trust many normal users to further

conceal the fact that they have been bribed [20]. Consequently, we also randomly add 10,000 edges

from the bribed users to normal users in the network.

After inserting fraudulent users, including briber and bribed users, into the Epinions dataset,
we compute both the DS and the IDS. The results reveal that both methods exclusively identified

fraudulent users, with no normal users present, successfully detecting all 10 briber users. The

DS detects 925 bribed users, while the IDS detects 970 bribed users, suggesting that IDS is better

than the DS for detecting fraudulent users. Figure 11 visualizes these findings, where all nodes

represent fraudulent users. The green nodes correspond to the 10 bribe users, and the blue nodes

represent the 925 bribed users identified by the DS. The IDS successfully detected all 925 bribed

users identified by the DS, as well as an additional 45 bribed users represented by the red nodes,

bringing the total to 970 detected bribed users. The gray nodes indicate bribed users that are not

detected by both the DS and the IDS. This case study demonstrates that, compared to the DS, our

proposed IDS is more effective in detecting fraudulent users, establishing its superiority in the

practical application of fraud detection.

8 Related Work

Densest subgraph search on directed graphs. For exact algorithms, Charikar [9] first proposed

an LP-based algorithm that requires solving 𝑂(∣𝑉 ∣2) linear programs. Later, Khuller and Saha [24]

introduced a flow-based algorithm, which requires solving 𝑂(∣𝑉 ∣2) maximum flow computations.

Recently, Ma et al. [30] used a divide-and-conquer technique to accelerate this flow-based approach.

Subsequently, Ma et al. [29] leveraged convex programming and various optimization techniques

to design the SOTA CP-Exact algorithm. To improve efficiency, several approximation algorithms

have also been proposed. For example, the core-based 2-approximation algorithms with time

2

Dataset source: https://snap.stanford.edu/data/soc-Epinions1.html.
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complexities of 𝑂(∣𝐸∣1.5) [30] and 𝑂(∣𝑉 ∣2∣𝐸∣) [9], as well as a core-based (
√
𝑐∗ + 1√

𝑐∗
)-approximation

algorithm [24] with 𝑂(∣𝐸∣) time complexity, whose approximation ratio is proved in Section 6.1.

The (1 + 𝜖)-approximation algorithm CP-Approx was proposed [29]. However, all these algorithms

have prohibitively runtime or poor approximation qualities, making them unsuitable for practical

applications.

Densest subgraph search on undirected graphs. The densest subgraph problem on undirected

graphs is defined as finding a subgraph that maximizes the ratio of the number of edges to the num-

ber of vertices in the subgraph [3–5, 8–10, 14, 15, 17, 19, 32, 37, 39, 42, 43]. A well-known algorithm

is based on a parameterized Goldberg flow network, with a time complexity of 𝑂(∣𝐸∣∣𝑉 ∣ log ∣𝑉 ∣)
[19]. To improve efficiency, Danisch et al. accelerated the process using convex-programming

techniques [14]. Besides, several approximation algorithms have also been proposed, such as the

2-approximation algorithm [9] with a linear 𝑂(∣𝐸∣) time complexity, the (1 + 𝜖)-approximation

iterative algorithm [5, 10], the 2-approximation algorithm [15], and the 2(1 + 𝜖)-approximation

algorithm [3]. Many variants of the densest subgraph problem have also been studied, such as the

locally top-𝑘 densest subgraph [28, 32], anchored densest subgraph [41], densest 𝑘-subgraph [2, 6],

and clique-density-based densest subgraph [15, 31, 36, 38, 40]. However, the densest subgraph

problem on undirected graphs is fundamentally different from that on directed graphs, and the

models and algorithms cannot be directly applied to directed graphs.

9 Conclusion
In this paper, we propose a novel IDS model that is simpler to compute than the DS while providing

a near-optimal density guarantee. First, we define the fractional (𝛼, 𝛽)-dense subgraph 𝐹𝛼,𝛽 and

the integral (𝛼, 𝛽)-dense subgraph 𝐷𝛼,𝛽 . We prove that the non-empty 𝐹𝛼,𝛽 that maximizes 𝛼 ⋅ 𝛽 is

exactly the DS, and we define the non-empty𝐷𝛼,𝛽 that maximizes 𝛼 ⋅𝛽 as our IDS. Then, we propose
a carefully-designed (𝛼, 𝛽)-dense flow network, based on which we develop a flow-based algorithm,

GetIDS, to search for the maximum value of 𝛼𝛽 with time complexity𝑂(𝑝 ⋅ log ∣𝑉 ∣ ⋅ ∣𝐸∣1.5). Building
on our proposed emptiness and non-emptiness theorems, we develop several powerful pruning

techniques and further propose an advanced GetIDS++ algorithm with the time complexity of

𝑂(𝑛𝑓 ⋅ ∣𝐸∣1.5), where 𝑛𝑓 is the number of maximum flow computations and is often a small number

in practice. To further improve efficiency, we propose a novel core-based (2 + 𝜖)-approximation

algorithm with a near-linear time complexity of 𝑂(∣𝐸∣ log
1+𝜖 ∣𝑉 ∣), which can extract near-densest

subgraphs while maintaining short runtime practically. Finally, we conduct extensive experiments

on 10 real-world graphs, with the results validating the effectiveness of our IDS model, and the

high efficiency and scalability of our proposed algorithms.

Acknowledgments
This workwas supported byNSFCGrants U2241211 and 62402399. Rong-Hua Li is the corresponding

author of this paper.

References
[1] Réka Albert, Hawoong Jeong, and Albert-László Barabási. 1999. Diameter of the world-wide web. nature 401, 6749

(1999), 130–131.

[2] Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. 2000. Greedily Finding a Dense Subgraph. J.
Algorithms 34, 2 (2000), 203–221. https://doi.org/10.1006/JAGM.1999.1062

[3] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. 2012. Densest Subgraph in Streaming and MapReduce. Proc.
VLDB Endow. 5, 5 (2012), 454–465.

[4] Oana Denisa Balalau, Francesco Bonchi, T.-H. Hubert Chan, Francesco Gullo, andMauro Sozio. 2015. Finding Subgraphs

with Maximum Total Density and Limited Overlap. In WSDM. 379–388.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 176. Publication date: June 2025.

https://doi.org/10.1006/JAGM.1999.1062


Integral Densest Subgraph Search on Directed Graphs 176:25

[5] Digvijay Boob, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos E. Tsourakakis, Di Wang, and Junxing Wang.

2020. Flowless: Extracting Densest Subgraphs Without Flow Computations. In WWW. 573–583.

[6] Nicolas Bourgeois, Aristotelis Giannakos, Giorgio Lucarelli, Ioannis Milis, and Vangelis Th Paschos. 2013. Exact

and approximation algorithms for densest k-subgraph. InWALCOM: Algorithms and Computation: 7th International
Workshop, WALCOM 2013, Kharagpur, India, February 14-16, 2013. Proceedings 7. Springer, 114–125.

[7] Andrea Capocci, Vito DP Servedio, Francesca Colaiori, Luciana S Buriol, Debora Donato, Stefano Leonardi, and Guido

Caldarelli. 2006. Preferential attachment in the growth of social networks: The internet encyclopedia Wikipedia.

Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 74, 3 (2006), 036116.
[8] Lijun Chang and Miao Qiao. 2020. Deconstruct Densest Subgraphs. In WWW. 2747–2753.

[9] Moses Charikar. 2000. Greedy approximation algorithms for finding dense components in a graph. In Approxima-
tion Algorithms for Combinatorial Optimization, Third International Workshop, APPROX 2000, Saarbrücken, Germany,
September 5-8, 2000, Proceedings (Lecture Notes in Computer Science, Vol. 1913). Springer, 84–95.

[10] Chandra Chekuri, Kent Quanrud, and Manuel R. Torres. 2022. Densest Subgraph: Supermodularity, Iterative Peeling,

and Flow. In SODA. SIAM, 1531–1555.

[11] Jie Chen and Yousef Saad. 2012. Dense Subgraph Extraction with Application to Community Detection. IEEE Trans.
Knowl. Data Eng. 24, 7 (2012), 1216–1230. https://doi.org/10.1109/TKDE.2010.271

[12] Francesco Colace, Massimo De Santo, Luca Greco, Vincenzo Moscato, and Antonio Picariello. 2015. A collaborative

user-centered framework for recommending items in Online Social Networks. Comput. Hum. Behav. 51 (2015), 694–704.
[13] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, 3rd

Edition. MIT Press.

[14] Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. 2017. Large Scale Density-friendly Graph Decomposition

via Convex Programming. InWWW. 233–242.

[15] Yixiang Fang, Kaiqiang Yu, Reynold Cheng, Laks V. S. Lakshmanan, and Xuemin Lin. 2019. Efficient Algorithms for

Densest Subgraph Discovery. Proc. VLDB Endow. 12, 11 (2019), 1719–1732.
[16] Eugene Fratkin, Brian T. Naughton, Douglas L. Brutlag, and Serafim Batzoglou. 2006. MotifCut: regulatory motifs

finding with maximum density subgraphs. In ISMB. 156–157.
[17] Esther Galbrun, Aristides Gionis, and Nikolaj Tatti. 2016. Top-k overlapping densest subgraphs. Data Min. Knowl.

Discov. 30, 5 (2016), 1134–1165.
[18] Christos Giatsidis, Dimitrios M. Thilikos, and Michalis Vazirgiannis. 2013. D-cores: measuring collaboration of directed

graphs based on degeneracy. Knowl. Inf. Syst. 35, 2 (2013), 311–343.
[19] Andrew V Goldberg. 1984. Finding a maximum density subgraph. Technical Report. University of California Berkeley,

Berkeley, CA, USA.

[20] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos Faloutsos. 2016. FRAUDAR: Bounding

Graph Fraud in the Face of Camouflage. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016. ACM, 895–904.

[21] Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng. 2007. Why we twitter: understanding microblogging usage

and communities. In Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network
analysis. 56–65.

[22] Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng. 2007. Why we twitter: understanding microblogging usage

and communities. In Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network
Analysis (San Jose, California) (WebKDD/SNA-KDD ’07). Association for Computing Machinery, New York, NY, USA,

56–65.

[23] Samir Khuller and Barna Saha. 2009. On Finding Dense Subgraphs. In Automata, Languages and Programming, 36th
International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 5555). Springer, 597–608.

[24] Samir Khuller and Barna Saha. 2009. On Finding Dense Subgraphs. In Automata, Languages and Programming, 36th
International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 5555). Springer, 597–608.

[25] Haseong Kim. 2014. Modelling and analysis of gene regulatory networks based on the G-network. Int. J. Adv. Intell.
Paradigms 6, 1 (2014), 28–51.

[26] Jon M. Kleinberg. 1999. Authoritative Sources in a Hyperlinked Environment. J. ACM 46, 5 (1999), 604–632.

[27] Xuankun Liao, Qing Liu, Jiaxin Jiang, Xin Huang, Jianliang Xu, and Byron Choi. 2022. Distributed D-core Decomposition

over Large Directed Graphs. Proc. VLDB Endow. 15, 8 (2022), 1546–1558.
[28] Chenhao Ma, Reynold Cheng, Laks V. S. Lakshmanan, and Xiaolin Han. 2022. Finding Locally Densest Subgraphs: A

Convex Programming Approach. Proc. VLDB Endow. 15, 11 (2022), 2719–2732. https://doi.org/10.14778/3551793.3551826
[29] Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks V. S. Lakshmanan, and Xiaolin Han. 2022. A Convex-Programming

Approach for Efficient Directed Densest Subgraph Discovery. In SIGMOD ’22: International Conference on Management

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 176. Publication date: June 2025.

https://doi.org/10.1109/TKDE.2010.271
https://doi.org/10.14778/3551793.3551826


176:26 Yalong Zhang, et al.

of Data, Philadelphia, PA, USA, June 12 - 17, 2022. ACM, 845–859.

[30] Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks V. S. Lakshmanan, Wenjie Zhang, and Xuemin Lin. 2020. Efficient

Algorithms for Densest Subgraph Discovery on Large Directed Graphs. In Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020.
ACM, 1051–1066.

[31] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos E. Tsourakakis, and Shen Chen Xu. 2015. Scalable

Large Near-Clique Detection in Large-Scale Networks via Sampling. In Proceedings of the 21th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, August 10-13, 2015, Longbing Cao,

Chengqi Zhang, Thorsten Joachims, Geoffrey I. Webb, Dragos D. Margineantu, and Graham Williams (Eds.). ACM,

815–824. https://doi.org/10.1145/2783258.2783385

[32] Lu Qin, Rong-Hua Li, Lijun Chang, and Chengqi Zhang. 2015. Locally Densest Subgraph Discovery. In KDD. 965–974.
[33] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with Interactive Graph Analytics and

Visualization. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin,
Texas, USA. AAAI Press, 4292–4293.

[34] Barna Saha, Allison Hoch, Samir Khuller, Louiqa Raschid, and Xiao-Ning Zhang. 2010. Dense Subgraphs with

Restrictions and Applications to Gene Annotation Graphs. In RECOMB (Lecture Notes in Computer Science, Vol. 6044).
456–472.

[35] Saurabh Sawlani and Junxing Wang. 2020. Near-optimal fully dynamic densest subgraph. In Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020. ACM, 181–193.

[36] Bintao Sun, Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. 2020. KClist++: A Simple Algorithm for Finding

k-Clique Densest Subgraphs in Large Graphs. Proc. VLDB Endow. 13, 10 (2020), 1628–1640. https://doi.org/10.14778/

3401960.3401962

[37] Nikolaj Tatti and Aristides Gionis. 2013. Discovering Nested Communities. In ECML PKDD (Lecture Notes in Computer
Science, Vol. 8189). 32–47.

[38] Charalampos E. Tsourakakis. 2015. The K-clique Densest Subgraph Problem. In Proceedings of the 24th International
Conference on World Wide Web, WWW 2015, Florence, Italy, May 18-22, 2015, Aldo Gangemi, Stefano Leonardi, and

Alessandro Panconesi (Eds.). ACM, 1122–1132. https://doi.org/10.1145/2736277.2741098

[39] Elena Valari, Maria Kontaki, and Apostolos N. Papadopoulos. 2012. Discovery of Top-k Dense Subgraphs in Dynamic

Graph Collections. In SSDBM (Lecture Notes in Computer Science, Vol. 7338). 213–230.
[40] Xiaowei Ye, Rong-Hua Li, Qiangqiang Dai, Hongzhi Chen, and Guoren Wang. 2024. Efficient k-Clique Counting on

Large Graphs: The Power of Color-Based Sampling Approaches. IEEE Trans. Knowl. Data Eng. 36, 4 (2024), 1518–1536.
https://doi.org/10.1109/TKDE.2023.3314643

[41] Xiaowei Ye, Rong-Hua Li, Lei Liang, Zhizhen Liu, Longlong Lin, and Guoren Wang. 2024. Efficient and Effective

Anchored Densest Subgraph Search: A Convex-programming based Approach. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD 2024, Barcelona, Spain, August 25-29, 2024, Ricardo Baeza-

Yates and Francesco Bonchi (Eds.). ACM, 3907–3918. https://doi.org/10.1145/3637528.3671727

[42] Yalong Zhang, Ronghua Li, Qi Zhang, Hongchao Qin, Lu Qin, and Guoren Wang. 2024. Efficient Algorithms for

Pseudoarboricity Computation in Large Static and Dynamic Graphs. Proc. VLDB Endow. 17, 11 (2024), 2722–2734.
[43] Yalong Zhang, Ronghua Li, Qi Zhang, Hongchao Qin, and Guoren Wang. 2024. Efficient Algorithms for Density

Decomposition on Large Static and Dynamic Graphs. Proc. VLDB Endow. 17, 11 (2024), 2933–2945.

Received October 2024; revised January 2025; accepted February 2025

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 176. Publication date: June 2025.

https://doi.org/10.1145/2783258.2783385
https://doi.org/10.14778/3401960.3401962
https://doi.org/10.14778/3401960.3401962
https://doi.org/10.1145/2736277.2741098
https://doi.org/10.1109/TKDE.2023.3314643
https://doi.org/10.1145/3637528.3671727

	Abstract
	1 Introduction
	2 Preliminaries
	3 Relation with Densest Subgraph
	3.1 F*,* is the densest subgraph
	3.2 Density of the integral densest subgraph

	4 A New Flow-Based Algorithm
	4.1 Compute a single D,
	4.2 A basic algorithm: GetIDS

	5 A Divide-and-Conquer Algorithm
	6 Approximation IDS Algorithms
	6.1 Existing approximation algorithms
	6.2 A novel (2+)-approximation algorithm

	7 Experiments
	7.1 Results of exact algorithms
	7.2 Results of approximation algorithms
	7.3 Case Study

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

